982 resultados para Alkali earth metals


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Migmatised metapelites from the Kodaikanal region, central Madurai Block, southern India have undergone ultrahigh-temperature metamorphism (950-1000 degrees C; 7-8 kbar). In-situ electron microprobe Th-U-Pb isochron (CHIME) dating of monazites in a leucosome and surrounding silica-saturated and silica-poor restites from the same outcrop indicates three principal ages that can be linked to the evolutionary history of these rocks. Monazite grains from the silica-saturated restite have well-defined, inherited cores with thick rims that yield an age of ca. 1684 Ma. This either dates the metamorphism of the original metapelite or is a detrital age of inherited monazite. Monazite grains from the silica-poor restite, thick rims from the silica-saturated restite, and monazite cores from the leucosome have ages ranging from 520 to 540 Ma suggesting a mean age of 530 Ma within the error bars. In the leucosome the altered rim of the monazite gives an age of ca. 502 Ma. Alteration takes the form of Th-depleted lobes of monazite with sharp curvilinear boundaries extending from the monazite grain rim into the core. We have replicated experimentally these altered rims in a monazite-leucosome experiment at 800 degrees C and 2 kbar. This experiment, coupled with earlier published monazite-fluid experiments involving high pH alkali-bearing fluids at high P-T, helps to confirm the idea that alkali-bearing fluids, in the melt and along grain boundaries during crystallization, were responsible for the formation of the altered monazite grain rims via the process of coupled dissolution-reprecipitation. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-power electronic devices used in digital telecom exchanges are vulnerable to surge voltages and currents primarily originating from natural lightning or due to the direct interactions between electric power and telecommunication lines, etc., causing the earth/ground potential rise, neutral potential rise, and faults in the system. The fault currents may flow directly to telecom lines or through the equipment to the customer's premises, causing adequate damage to the equipment and personnel safety. In wireline applications, analog or digital, central office, exchanges, and subscriber sides have to be protected. Decisive protection and protective methods have to be employed for proper functioning of the equipment under overvoltage/overcurrent conditions. Current investigation reports some interesting results obtained on the recently developed high-voltage high-current protection cards used in digital telecom exchanges. The performances of protection cards both for the ring wave and hybrid wave surges are evaluated and presented. The surge generators required for the investigation are developed and fabricated in house as per the relevant telecom standards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using in situ, high-speed imaging of a hard wedge sliding against pure aluminum, and image analysis by particle image velocimetry, the deformation field in sliding is mapped at high resolution. This model system is representative of asperity contacts on engineered surfaces and die-workpiece contacts in deformation and machining processes. It is shown that large, uniform plastic strains of 1-5 can be imposed at the Al surface, up to depths of 500 mu m, under suitable sliding conditions. The spatial strain and strain rate distributions are significantly influenced by the initial deformation state of the Al, e.g., extent of work hardening, and sliding incidence angle. Uniform straining occurs only under conditions of steady laminar flow in the metal. Large pre-strains and higher sliding angles promote breakdown in laminar flow due to surface fold formation or flow localization in the form of shear bands, thus imposing limits on uniform straining by sliding. Avoidance of unsteady sliding conditions, and selection of parameters like sliding angle, thus provides a way to control the deformation field. Key characteristics of the sliding deformation such as strain and strain rate, laminar flow, folding and prow formation are well predicted by finite element simulation. The deformation field provides a quantitative basis for interpreting wear particle formation. Implications for engineering functionally graded surfaces, sliding wear and ductile failure in metals are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A meso material model for polycrystalline metals is proposed, in which the tiny slip systems distributing randomly between crystal slices in micro-grains or on grain boundaries are replaced by macro equivalent slip systems determined by the work-conjugate principle. The elastoplastic constitutive equation of this model is formulated for the active hardening, latent hardening and Bauschinger effect to predict macro elastoplastic stress-strain responses of polycrystalline metals under complex loading conditions. The influence of the material property parameters on size and shape of the subsequent yield surfaces is numerically investigated to demonstrate the fundamental features of the proposed material model. The derived constitutive equation is proved accurate and efficient in numerical analysis. Compared with the self-consistent theories with crystal grains as their basic components, the present theory is much simpler in mathematical treatment.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments with N//2O were carried out with a view to obtaining additional information about the reactivity of oxygen surface species. On clean Ag, N//2O decomposition was found to be an activated process which led exclusively to the deposition of O(a) species. The presence of preadsorbed oxygen or subsurface oxygen served to enhance the deposition rate of O(a). Subsequent dosing with ethylene at 300 K of such an oxygen-populated surface followed by TPR examination showed it to be active for ethylene oxide formation. Control experiments established that adventitious decomposition of N//2O at the reactor walls or specimen supports followed by possible re-absorption of O//2(a) was an entirely negligible process. ) The oxidation activity of N//2O was also investigated at elevated pressures in the batch reactor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

表面技术能够显著提高材料功能而成为工程和产品设计的重要组成部分, 但前提是表面技术必须具有可设计性。为此, 需要开拓和发展表面组合加工技术, 进行创新。该技术的内涵体现了新材料与新技术、基础研究与产业化有机结合的特点, 具有重要的价值和广阔的前景。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data on the occurrence of solidification cracking in low alloy steel welds have been analysed using a classification neural network based on a Bayesian framework. It has thereby been possible to express quantitatively the effect of variables such as the chemical composition, welding conditions, and weld geometry, on the tendency for solidification cracking during solidification. The ability of the network to express the relationship in a suitably non-linear form is shown to be vital in reproducing known experimental phenomena. © 1996 The Institute of Materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deformation twins have been observed in nanocrystalline (nc) fcc metals with medium-to-high stacking fault energies such as aluminum, copper, and nickel. These metals in their coarse-grained states rarely deform by twining at room temperature and low strain rates. Several twinning mechanisms have been reported that are unique to nc metals. This paper reviews experimental evidences on deformation twinning and partial dislocation. emissions from grain boundaries, twinning mechanisms, and twins with zero-macro-strain. Factors that affect the twinning propensity and recent analytical models on the critical grain sizes for twinning are also discussed. The current issues on deformation twinning in nanocrystalline metals are listed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macroscopic strain was hitherto considered a necessary corollary of deformation twinning in coarse-grained metals. Recently, twinning has been found to be a preeminent deformation mechanism in nanocrystalline face-centered-cubic (fcc) metals with medium-to-high stacking fault energies. Here we report a surprising discovery that the vast majority of deformation twins in nanocrystalline Al, Ni, and Cu, contrary to popular belief, yield zero net macroscopic strain. We propose a new twinning mechanism, random activation of partials, to explain this unusual phenomenon. The random activation of partials mechanism appears to be the most plausible mechanism and may be unique to nanocrystalline fcc metals with implications for their deformation behavior and mechanical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Predictions based on an anisotropic elastic-plastic constitutive model proposed in the first part of this paper are compared with the experimental stress and strain data on OHFC copper under first torsion to about 13% and partial unloading, and then tension-torsion to about 10% along eight different loading paths. This paper also describes the deformation and stress of the thin-walled tubular specimen under finite deformation, the numerical implementation of the model, and the detailed procedure for determining the material parameters in the model. Finally, the model is extended to a general representation of the multiple directors, and the elastic-viscoplastic extension of the constitutive model is considered.