953 resultados para Al-Si-Cu(4) alloy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The distribution of 210Pb and 210 Po on dissolved (< 0.4 micron) and particulate (> 0.4 micron) phases has been measured at ten stations occupied during cruise 32 of F.S. "Meteor" in the tropical and eastern North Atlantic. Both radionuclides occur principally in the dissolved phase. Unsupported 210Pb activities, maintained by flux from the atmosphere, are present in the surface mixed layer and penetrate into the thermocline to depths of about 500 m. Dissolved 210Po is ordinarily present in the mixed layer at less than equilibrium concentrations, suggesting rapid biological removal of this nuclide. Particulate matter is enriched in 210Po, with 210Po/210Pb activity ratios greater than 1.0, similar to those reported for phytoplankton. At depths of 100-300 m, 210Po maxima occur, and unsupported 210Po is frequently present, an observation that suggests rapid re-cycling within the thermocline. Comparison of the 210Pb distributions with those reported for 226Ra at nearby GEOSECS stations confirms the widespread existence of a 210Pb/226Ra disequilibrium in the deep sea. Close to the bottom, profiles of 210Pb and 226Ra usually diverge, and 210Pb concentrations frequently decrease with depth, suggesting a sink 210 Pb near the seafloor. Particulate 210Pb concentrations ordinarily show little systematic variation with depth. At depths greater than 1000 m, dissolved 210Po activities are, on the average, less than those of 210Pb by 12%. A corresponding 210 Po enrichment in the particulate phase is found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combined d18O/salinity data reveal a distinctive water mass generated during winter sea ice formation which is found predominantly in the coastal polynya region of the southern Laptev Sea. Export of the brine-enriched bottom water shows interannual variability in correlation with atmospheric conditions. Summer anticyclonic circulation is favoring an offshore transport of river water at the surface as well as a pronounced signal of brine-enriched waters at about 50 m water depth at the shelf break. Summer cyclonic atmospheric circulation favors onshore or an eastward, alongshore water transport, and at the shelf break the river water fraction is reduced and the pronounced brine signal is missing, while on the middle Laptev Sea shelf, brine-enriched waters are found in high proportions. Residence times of bottom and subsurface waters on the shelf may thereby vary considerably: an export of shelf waters to the Arctic Ocean halocline might be shut down or strongly reduced during "onshore" cyclonic atmospheric circulation, while with "offshore" anticyclonic atmospheric circulation, brine waters are exported and residence times may be as short as 1 year only.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Authigenic carbonates forming at an active methane-seep on the Makran accretionary prism mainly consist of aragonite in the form of microcrystalline, cryptocrystalline, and botryoidal phases. The d13Ccarbonate values are very negative (-49.0 to -44.0 per mill V-PDB), agreeing with microbial methane as dominant carbon source. The d18Ocarbonate values are exclusively positive (+ 3.0 to + 4.5 per mill V-PDB) and indicate precipitation in equilibrium with seawater at bottom water temperatures. The content of rare earth elements and yttrium (REE + Y) determined by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and solution ICP-MS varies for each aragonite variety, with early microcrystalline aragonite yielding the highest, cryptocrystalline aragonite intermediate, and later botryoidal aragonite the lowest REE + Y concentrations. Shale-normalised REE + Y patterns of different types of authigenic carbonate reflect distinct pore fluid compositions during precipitation: Microcrystalline aragonite shows high contents of middle rare earth elements (MREE), reflecting REE patterns ascribed to anoxic pore water. Cryptocrystalline aragonite exhibits a seawater-like REE + Y pattern at elevated total REE + Y concentrations, indicating higher concentrations of REEs in pore waters, which were influenced by seawater. Botryoidal aragonite is characterised by seawater-like REE + Y patterns at initial growth stages followed by an increase of light rare earth elements (LREE) with advancing crystal growth, reflecting changing pore fluid composition during precipitation of this cement. Conventional sample preparation involving micro-drilling of carbonate phases and subsequent solution ICP-MS does not allow to recognise such subtle changes in the REE + Y composition of individual carbonate phases. To be able to reconstruct the evolution of pore water composition during early diagenesis, an analytical approach is required that allows to track the changing elemental composition in a paragenetic sequence as well as in individual phases. High-resolution analysis of seep carbonates from the Makran accretionary prism by LA-ICP-MS reveals that pore fluid composition not only evolved in the course of the formation of different phases, but also changed during the precipitation of individual phases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

14C concentrations, as well as 14C, hydrographic and nutrient data are reported for 5 hydrographic stations that form a transatlantic section near 40° N ("Meteor" cruise no. 23, 1971). Precision (for 14C ± 0.3 ? or better) and comparability with literature data are specified. A planned intercomparison with the US GEOSECS program within the Newfoundland Basin deep water failed because of variability of water characteristics. The observed 14C values decrease from about Delta 14C = + 80 ? at the surface to -70 ? at 2000 m depth. Deeper down, the values west of the Midatlantic Ridge remain similar, whereas those east of the ridge decrease further, to about - 110 ?. It is shown that bomb-14C is prominent down to about 1500 m depth. Beyond this depth the bomb 14C component is small and is negligible in the eastern basin below 2800 m. On the basis of the 14C-tritium correlation, the distribution of natural 14C below about 1500 m depth is derived from the observations. In the deep and bottom water east of the ridge the 14C-salinity relationship seemingly is non-linear. Contrary to expectation, the 14C concentration in the bottom water is not lower than found on an US GEOSECS station near 10° N. Apparently, lateral concentration differences in the Northeast Atlantic bottom water as well as nonlinearity of the 14C-salinity relationship at 40° N do not exceed 10 ? in Delta 14C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present newly acquired trace element compositions for more than 300 zircon grains in 36 gabbros formed at the slow-spreading Mid-Atlantic and Southwest Indian Ridges. Rare earth element patterns for zircon from modern oceanic crust completely overlap with those for zircon crystallized in continental granitoids. However, plots of U versus Yb and U/Yb versus Hf or Y discriminate zircons crystallized in oceanic crust from continental zircon, and provide a relatively robust method for distinguishing zircons from these environments. Approximately 80% of the modern ocean crust zircons are distinct from the field defined by more than 1700 continental zircons from Archean and Phanerozoic samples. These discrimination diagrams provide a new tool for fingerprinting ocean crust zircons derived from reservoirs like that of modern mid-ocean ridge basalt (MORB) in both modern and ancient detrital zircon populations. Hadean detrital zircons previously reported from the Acasta Gneiss, Canada, and the Narryer Gneiss terrane, Western Australia, plot in the continental granitoid field, supporting hypotheses that at least some Hadean detrital zircons crystallized in continental crust forming magmas and not from a reservoir like modern MORB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The distribution of dissolved aluminium in the West Atlantic Ocean shows a mirror image with that of dissolved silicic acid, hinting at intricate interactions between the ocean cycling of Al and Si. The marine biogeochemistry of Al is of interest because of its potential impact on diatom opal remineralisation, hence Si availability. Furthermore, the dissolved Al concentration at the surface ocean has been used as a tracer for dust input, dust being the most important source of the bio-essential trace element iron to the ocean. Previously, the dissolved concentration of Al was simulated reasonably well with only a dust source, and scavenging by adsorption on settling biogenic debris as the only removal process. Here we explore the impacts of (i) a sediment source of Al in the Northern Hemisphere (especially north of ~ 40° N), (ii) the imposed velocity field, and (iii) biological incorporation of Al on the modelled Al distribution in the ocean. The sediment source clearly improves the model results, and using a different velocity field shows the importance of advection on the simulated Al distribution. Biological incorporation appears to be a potentially important removal process. However, conclusive independent data to constrain the Al / Si incorporation ratio by growing diatoms are missing. Therefore, this study does not provide a definitive answer to the question of the relative importance of Al removal by incorporation compared to removal by adsorptive scavenging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of oceanographic observations on board the icebreaker "Shirase" and tidal observations at Syowa Station, Antarctica, are presented in this report. The oceanographic observations were carried out by the summer party of the 37th Japanese Antarctic Research Expedition (JARE-37) during the austral summer of 1995/1996. The tidal observations were carried out by the winter party of JARE-36 from February 1995 to January 1996.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemical analyses of North Atlantic D.S.D.P. (Deep Sea Drilling Project) sediments indicate that basal sediments generally contain higher concentrations of Fe, Mn, Mg, Pb, and Ni, and similar or lower concentrations of Ti, Al, Cr, Cu, Zn, and Li than the material overlying them. Partition studies on selected samples indicate that the enriched metals in the basal sediments are usually held in a fashion similar to that in basal sediments from the Pacific, other D.S.D.P. sediments, and modern North Atlantic ridge and non-ridge material. Although, on average, chemical differences between basal sediments of varying ages are apparent, normalization of the data indicates that the processes leading to metal enrichment on the crest of the Mid-Atlantic Ridge appear to have been approximately constant in intensity since Cretaceous times. In addition, the bulk composition of detrital sediments also appears to have been relatively constant over the same time period. Paleocene sediments from site 118 are, however, an exception to this rule, there apparently having been an increased detrital influx during this period. The bulk geochemistry, partitioning patterns, and mineralogy of sediments from D.S.D.P. 9A indicates that post-depositional migration of such elements as Mn, Ni, Cu, Zn, and Pb may have occurred. The basement encountered at the base of site 138 is thought to be a basaltic sill, but the overlying basal sediments are geochemically similar to other metalliferous basal sediments from the North Atlantic. These results, as well as those from site 114 where true oceanic basement was encountered, but where there was an estimated 7 m.y. hiatus between basaltic extrusion and basal sediment deposition, indicate that ridge-crest sediments are not necessarily deposited during active volcanism but can be formed after the volcanism has ceased. The predominant processes for metal enrichment in these deposits and those formed in association with other submarine volcanic features is a combination of shallow hydrothermal activity, submarine weathering of basalt, and the formation of ferromanganese oxides which can scavenge metals from seawater. In addition, it seems as though the formation of submarine metalliferous sediments is not restricted to active-ridge areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Global Ocean Sampling (GOS) expedition is currently the largest and geographically most comprehensive metagenomic dataset, including samples from the Atlantic, Pacific, and Indian Oceans. This study makes use of the wide range of environmental conditions and habitats encompassed within the GOS sites in order to investigate the ecological structuring of bacterial and archaeal taxon ranks. Community structures based on taxonomically classified 16S ribosomal RNA (rRNA) gene fragments at phylum, class, order, family, and genus rank levels were examined using multivariate statistical analysis, and the results were inspected in the context of oceanographic environmental variables and structured habitat classifications. At all taxon rank levels, community structures of neritic, oceanic, estuarine biomes, as well as other exotic biomes (salt marsh, lake, mangrove), were readily distinguishable from each other. A strong structuring of the communities with chlorophyll a concentration and a weaker yet significant structuring with temperature and salinity were observed. Furthermore, there were significant correlations between community structures and habitat classification. These results were used for further investigation of one-to-one relationships between taxa and environment and provided indications for ecological preferences shaped by primary production for both cultured and uncultured bacterial and archaeal clades.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macroalgae, especially perennial species, are exposed to a seasonally variable fouling pressure. It was hypothesized that macroalgae regulate their antifouling defense to fouling pressure. Over one year, the macrofouling pressure and the chemical anti-macrofouling defense strength of the brown algae Fucus vesiculosus and Fucus serratus were assessed with monthly evaluation. The anti-macrofouling defense was assessed by means of surface-extracted Fucus metabolites tested at near-natural concentrations in a novel in situ bioassay. Additionally, the mannitol content of both Fucus species was determined to assess resource availability for defense production. The surface chemistry of both Fucus species exhibited seasonal variability in attractiveness to Amphibalanus improvisus and Mytilus edulis. Of this variability, 50-60% is explained by a sinusoidal model. Only F. vesiculosus extracts originating from the spring and summer significantly deterred settlement of A. improvisus. The strength of macroalgal antifouling defense did not correlate either with in situ macrofouling pressure or with measured mannitol content, which, however, were never depleted.