988 resultados para Agricultural soils
Resumo:
Liming acid soils is considered to assure the availability of Mo in crops. Additionally, in peanuts (Arachis hypogaea L.) the positive response to liming is associated to a better supply of Ca+2, Mo for the nitrogenase-complex activity, and other non-nitrogen fixing activities of the crop. This study was thus undertaken to assess the effect of lime, Mo, and the lime-Mo interaction on peanut crop, on an acid Ultisol at the Mococa Experimental Station, Instituto Agronômico, São Paulo State, Brazil, from 1987 to 1990. A randomized complete block design with four replications, in a 4 x 4 factorial arrangement, was used in the study. The factors included four lime rates (0, 2, 4, and 6 t ha-1) broadcast and incorporated into the soil, and Mo (0, 100, 200, and 300 g ha-1) as (NH4)2MoO4 applied as seed dressing. Lime was applied once at the beginning of the study while Mo was applied at every planting. Peanut seed cv 'tatu' was used. Significant increase in peanut kernel yield with liming was only evident in the absence of Mo, whereas the peanut response to Mo was observed in two out of the three harvests. A higher yield response (28 % increase) was found when Mo was applied without liming. Soil molybdenum availability, as indicated by plant leaf analysis, increased significantly when lime was applied. Molybdenum fertilization led to higher leaf N content, which in turn increased peanut yield in treatments with smaller lime doses.
Resumo:
Selostus: Keskisuomalaisen maatalousmaiseman muutosten GIS-analyysi
Resumo:
The behavior of glyphosate in a Rhodic Oxisol, collected from fields under no-till and conventional management systems in Ponta Grossa, Parana state (Brazil) was investigated. Both agricultural systems had been in production for 23 years. Glyphosate mineralization, soil-bound forms, sorption and desorption kinetics, sorption/desorption batch experiments, and soil glyphosate phythoavailability (to Panicum maximum) were determined. The mineralization experiment was set up in a completely randomized design with a 2 x 2 factorial scheme (two management systems and two 14C radiolabelled positions in the glyphosate), with five replicates. 14CO2 evolution was measured in 7-day intervals during 63 days. The glyphosate sorption kinetics was investigated in a batch experiment, employing a glyphosate concentration of 0.84 mg L-1. The equilibration solution was 0.01 mol L-1 CaCl2 and the equilibration times were 0, 10, 30, 60, 120, 240, and 360 min. Sorption/desorption of glyphosate was also investigated using equilibrium batch experiments. Five different concentrations of the herbicide were used for sorption (0.42, 0.84, 1.68, 3.36, and 6.72 mg L-1) and one concentration for desorption. Glyphosate phytoavailability was analyzed in a 2 x 5 factorial scheme with two management systems and five glyphosate concentrations added to soil (0, 4.2, 8.4, 42.0, and 210.0 µg g-1) in a completely randomized design. Phytotoxicity symptoms in P. maximum were evaluated for different periods. The soil under both management systems showed high glyphosate sorption, which impeded its desorption and impaired the mineralization in the soil solution. Practically the total amount of the applied glyphosate was quickly sorbed (over 90 % sorbed within 10 min). Glyphosate bound to residues did not have adverse effects on P. maximum growth. The mineralization of glyphosate was faster under no-till and aminomethylphosphonic acid was the main glyphosate metabolite.
Resumo:
Introduction. Agricultural workers are among the professional groups most at risk of developing acute or chronic respiratory problems. Despite this fact, the etiology of these occupational diseases is poorly known, even in important sectors of agriculture such as the crops sector. Cereals can be colonized by a large number of fungal species throughout the plants' growth, but also during grain storage. Some of these fungi deliver toxins that can have a serious impact on human health when they are ingested via wheat products. Although International and European legislation on contaminants in food, including mycotoxins, include measures to ensure protection of public health by setting down the maximum levels for certain contaminants, the risks associated with the inhalation of such molecules during grain handling remains poorly documented. Goal of study. This project's objective was to characterize worker exposure to pathogenic, irritative or allergenic microorganisms and to identify the abiotic or biotic factors that reduce the growth of these microorganisms in crops. Indeed, the proliferation of microorganisms on wheat is dependent on temperature, rainfall and human disturbance (e.g. usage of tillage, addition of fungicides). A change in the concentration of these microorganisms in the substrate will directly result in a change in the concentration of aerosolized particles of the same microorganisms. Therefore, the exposure of worker to bioaérosols will also change. The Vaud region of Switzerland is a perfect region for conduct such a project as weather conditions vary and agricultural land management programs are divers at a small geographic scale. Methods. Bioaerosols and wheat dust have been sampled during wheat harvesting of summer 2010 at 100 sites uniformly distributed in the Vaud region that are representative of the different agriculture practices. Personal exposure has been evaluated for different wheat related activities: harvesting, grain unload, baling straw, the cleaning of harvesters and silos. Aerosols have been sampled at a rate of 2L/min between 15 min to 4 hours (t) on a 5m PVC filter for estimating the total dust inhaled, on gelatine filter for the identification and quantification of molds, and on a 0.45um polycarbonate filter for endotoxin quantification. Altitude, temperature and annual average rainfall were considered for each site. The physical and chemical characteristics of soils were determined using the methods in effect at Sol Council (Nyon). Total dust has been quantified following NIOSH 0500 method. Reactive endotoxine activity has been determined with Limulus Amebocyte Lysate Assay. All molds have been identified by the pyrosequencing of ITS2 amplicons generated from bioaerosol or wheat dust genomic DNA. Results & Conclusions. Our results confirm the previous quantitative data on the worker exposure to wheat dust. In addition, they show that crop workers are systematically exposed to complex mixtures of allergens, irritants or cytotoxic components. The novelty of our study is the systematic detection of molds such as Fusarium - that is a mycotoxins producer - in the bioaerosols. The results are interpreted by taking in account the agriculture practice, the Phosphorus : Carbon : Nitrogen ratio of the soil, the altitude and the average of rainy days per year.
Resumo:
Audit report on America’s Agricultural Industrial Heritage Landscape, Inc., d/b/a Silos and Smokestacks National Heritage Area (Silos and Smokestacks), in Waterloo, Iowa for the years ended December 31, 2009 and 2008
Resumo:
The directory of all the Agriculture organizations on Iowa. Taken from online directory on June 1, 2010.
Resumo:
The industrial refining of kaolin involves the removal of iron oxides and hydroxides along with other impurities that cause discoloration of the final product and depreciate its commercial value, particularly undesirable if destined to the paper industry. The chemical leaching in the industrial processing requires treatments with sodium hyposulfite, metallic zinc, or sulfuric and phosphoric acids, in order to reduce, dissolve and remove ferruginous compounds. To mitigate the environmental impact, the acidic effluent from the leaching process must be neutralized, usually with calcium oxide. The resulting solid residue contains phosphorous, zinc, and calcium, among other essential nutrients for plant growth, suggesting its use as a macro and micronutrient source. Samples of such a solid industrial residue were used here to evaluate their potential as soil fertilizer in an incubation greenhouse experiment with two soil samples (clayey and medium-textured). The small pH shift generated by applying the residue to the soil was not a limiting factor for its use in agriculture. The evolution of the concentrations of exchangeable calcium, and phosphorous and zinc extractability by Mehlich-1 extractant during the incubation period confirms the potential use of this industrial residue as agricultural fertilizer.
Resumo:
Selostus: Maatalous- ja puutarhakasveissa havaitut virukset ja niiden merkitys Suomessa
Resumo:
Audit report on the Iowa Agricultural Development Authority for the year ended June 30, 2010
Resumo:
Kinetic studies on soil potassium release can contribute to a better understanding of K availability to plants. This study was conducted to evaluate K release rates from the whole soil, clay, silt, and sand fractions of B-horizon samples of a basalt-derived Oxisol and a sienite-derived Ultisol, both representative soils from coffee regions of Minas Gerais State, Brazil. Potassium was extracted from each fraction after eight different shaking time periods (0-665 h) with either 0.001 mol L-1 citrate or oxalate at a 1:10 solid:solution ratio. First-order, Elovich, zero-order, and parabolic diffusion equations were used to parameterize the time dependence of K release. For the Oxisol, the first-order equation fitted best to the experimental data of K release, with similar rates for all fractions and independent of the presence of citrate or oxalate in the extractant solution. For all studied Ultisol fractions, in which K release rates increased when extractions were performed with citrate solution, the Elovich model described K release kinetics most adequately. The highest potassium release rate of the Ultisol silt fraction was probably due to the transference of "non-exchangeable" K to the extractant solution, whereas in the Oxisol exchangeable potassium represented the main K source in all studied fractions.
Resumo:
A major constraint to agricultural production in acid soils of tropical regions is the low soil P availability, due to the high adsorption capacity, low P level in the source material and low efficiency of P uptake and use by most of the modern varieties grown commercially. This study was carried out to evaluate the biomass production and P use by forage grasses on two soils fertilized with two P sources of different solubility. Two experiments were carried out, one for each soil (Cambisol and Latosol), using pots filled with 4 dm³ soil in a completely randomized design and a 4 x 2 factorial scheme. The treatments consisted of a combination of four forage plants (Brachiaria decumbens, Brachiaria brizantha, Pennisetum glaucum and Sorghum bicolor) with two P sources (Triple Superphosphate - TSP and Arad Reactive Phosphate - ARP), with four replications. The forage grasses were harvested at pre-flowering, when dry matter weight and P concentrations were measured. Based on the P concentration and dry matter production, the total P accumulation was calculated. With these data, the following indices were calculated: the P uptake efficiency of roots, P use efficiency, use efficiency of available P, use efficiency of applied P and agronomic efficiency. The use of the source with higher solubility (TSP) resulted, generally, in higher total dry matter and total P accumulation in the forage grasses, in both soils. For the less reactive source (ARP), the means found in the forage grasses, for use efficiency and efficient use of available P, were always higher when grown in Latosol, indicating favorable conditions for the solubility of ARP. The total dry matter of Brachiaria brizantha was generally higher, with low P uptake, accumulation and translocation, which indicated good P use efficiency for both P sources and soils. The forage plants differed in the P use potential, due to the sources of the applied P and of the soils used. Less than 10 % of the applied P was immobilized in the forage dry matter. Highest values were observed for TSP, but this was not reflected in a higher use efficiency of P from this source.
Resumo:
Phosphorus fractions were determined in soil samples from areas fertilized or not with farmyard cattle manure (FYM) and in samples of FYM used in the semi-arid region of Paraiba state, Brazil. Soil samples were taken from the 0-20; 20-40 and 40-60 cm layers of 18 cultivated areas, which, according to interviews with farmers, had been treated with 12 to 20 t ha-1 FYM annually, for the past 2 to 40 years. Soil samples were also collected from four unfertilized pasture areas as controls. Phosphorus in the soil samples was sequentially extracted with water (Pw), resin (Pres), NaHCO3 (Pi bic and Po bic), NaOH (Pi hid and Po hid), H2SO4 (Pacid) and, finally, by digestion with H2SO4/H2O2 (Presd). Nine FYM samples were extracted with water, resin, Mehlich-1, H2SO4, NaOH or digestion with H2SO4/H2O2, not sequentially, and the extracts analyzed for P. The sampled areas had homogeneous, sandy and P-deficient soils; increases in total soil P (Pt) above the mean value of the control areas (up to 274 mg kg-1 in the 0-20 cm layer of the most P-enriched samples) were therefore attributed to FYM applications, which was the only external P input in the region. Regression analysis was used to study the relationship between soil P fractions and Pt. The Pacid fraction, related to Ca-P forms, showed the greatest increases (p < 0.01) as a result of FYM applications, rising from 8.4 mg kg-1 in a non-fertilized sample to 43.8 mg kg-1 in the sample with the highest Pt content. The sum of Pw, Pres and Pi bic, considered as labile P, showed comparable increases with Pacid, while Pi hid showed the smallest increase due to FYM applications. Organic P forms also increased, more so the fraction Po hid, considered less labile, than the more labile one, Po bic. The residual P fraction was practically half of Pt, independently of the Pt value. Increases in labile P, Pacid and organic P were justified by the high average concentration of Pw (36 %), Pacid (34 %), and Po hid (30 %) in the FYM. Significant changes in the proportion of P forms among soil layers indicated the downward movement of P in organic forms.
Resumo:
It is well-known that Amazon tropical forest soils contain high microbial biodiversity. However, anthropogenic actions of slash and burn, mainly for pasture establishment, induce profound changes in the well-balanced biogeochemical cycles. After a few years the grass yield usually declines, the pasture is abandoned and is transformed into a secondary vegetation called "capoeira" or fallow. The aim of this study was to examine how the clearing of Amazon rainforest for pasture affects: (1) the diversity of the Bacteria domain evaluated by Polymerase Chain Reaction and Denaturing Gradient Gel Electrophoresis (PCR-DGGE), (2) microbial biomass and some soil chemical properties (pH, moisture, P, K, Ca, Mg, Al, H + Al, and BS), and (3) the influence of environmental variables on the genetic structure of bacterial community. In the pasture soil, total carbon (C) was between 30 to 42 % higher than in the fallow, and almost 47 % higher than in the forest soil over a year. The same pattern was observed for N. Microbial biomass in the pasture was about 38 and 26 % higher than at fallow and forest sites, respectively, in the rainy season. DGGE profiling revealed a lower number of bands per area in the dry season, but differences in the structure of bacterial communities among sites were better defined than in the wet season. The bacterial DNA fingerprints in the forest were stronger related to Al content and the Cmic:Ctot and Nmic:Ntot ratios. For pasture and fallow sites, the structure of the Bacteria domain was more associated with pH, sum of bases, moisture, total C and N and the microbial biomass. In general microbial biomass in the soils was influenced by total C and N, which were associated with the Bacteria domain, since the bacterial community is a component and active fraction of the microbial biomass. Results show that the genetic composition of bacterial communities in Amazonian soils changed along the sequence forest-pasture-fallow.
Resumo:
Exchangeable Al has been used as a criterion for the calculation of lime requirement in several Brazilian States. However, the laboratory method with extraction by a 1 mol L-1 KCl solution followed by indirect alkaline titration is not accurate for some Brazilian soils, mainly in the case of soils with high organic matter content. The objective of this study was therefore to evaluate the stoichiometry of H+/Al3+ in KCl soil extracts. The results suggested that organically complexed Al is the main contributor to exchangeable acidity in soils enriched with organic matter. Liming recommendations for organic soils based exclusively on exchangeable Al determined by the NaOH titration method should therefore be revised.