852 resultados para Aeronautical Firefighters oxygen consumption ventilatory threshold body composition
Resumo:
Fecundity, reproductive effort (estimated both from production measurements and from physiological data), the energetic costs of reproduction and the reproductive value of different size classes were measured for mussels at different sites and related to age and to tissue weight. Variability between sites was considerable and differences as great as 10 x were recorded between minimum and maximum values for egg production, reproductive effort and reproductive value. However, similarities between mussels from different sites were also apparent, as regards egg size, the estimated metabolic costs of egg production (based on measurements of oxygen consumption), the relationship (isometric) between egg production and body size, the fact of an increase in reproductive effort with increase in size, and the age at which maximum residual reproductive values was expressed. These relationships are discussed in terms of the fundamental reproductive strategy of the species and the degree of environmental stress imposed on the mussels at the different sites.
Resumo:
Individuals of Mytilus edulis L., collected from the Erme estuary (S.W. England) in 1978, were exposed to low concentrations (7 to 68 μg l-1) of the water-accommodated fraction (WAF) of North Sea crude oil. The pattern of accumulation of petroleum hydrocarbons in the body tissues was affected by the presence of algal food cells, the period of exposure, the hydrocarbon concentration in seawater, the type of body tissue and the nature of the hydrocarbon. Many physiological responses (e.g. rates of oxygen consumption, feeding, excretion, and scope for growth), cellular responses (e.g. lysosomal latency and digestive cell size) and biochemical responses (e.g. specific activities of several enzymes) were significantly altered by short-term (4 wk) and/or long-term (5 mo) exposure to WAF. Stress indices such as scope for growth and lysosomal latency were negatively correlated with tissue aromatic hydrocarbons.
Resumo:
Profiles of suspended particulate load and its organic and inorganic carbon contents as well as salinity, dissolved oxygen, ammonia and divalent manganese have been recorded throughout the mixing region of the Tamar Estuary,Southwest England, in late summer when there was pronounced net oxygen consumption. The results indicate that trapping of particulate organic detritus (of both riverine and marine origins) within the high turbidity zone contributes to the localisation and buffering of the seasonal oxygen demand exerted within the low salinity region of the estuary.
Resumo:
Seasonal cycles in the rates of oxygen consumption, feeding, absorption efficiency and ammonia-nitrogen excretion in two populations of Mytilus edulis were measured in the field under ambient conditions and related to body size, the gametogenic cycle, the concentration of suspended particulate matter in the water and temperature. Relationships between the various physiological variables are also considered and protein and energy budgets estimated. Both the “scope for growth” and the “relative maintenance cost” were seasonally variable, demonstrating a minimum capacity for growth in the winter and a maximum capacity in the summer. In one population subjected to abnormally high temperatures in the winter the scope for growth was negative for four or five months between January and May. These population differences are discussed and the potential for using physiological integrations in intra-specific comparisons of fitness is identified.
Resumo:
Small rodents with a large surf ace-area-to-volume ratio and a high thermal conductance are likely to experience conditions where they have to expend large: amounts of energy in order to maintain a constant body temperature at low ambient temperatures. The survival of small rodents is thus dependent on their ability to reduce heat loss and increase heat production at low ambient temperatures. Two such animals are the social subterranean rodents Cryptomys damarensis (the Damaraland mole-rat) and Cryptomys hottentotus natalensis (the Natal mole-rat). This study examined the energy savings associated with huddling as a behavioural thermoregulatory mechanism to conserve energy in both these species. Individual oxygen consumption (VO2) was measured in groups ranging in size from one to 15 huddling animals for both species at ambient temperatures of 14, 18, 22, 26 and 30 degrees C. Savings in energy (VO2) were then compared between the two species. Significant differences in VO2 (p
Resumo:
We compared non-shivering thermogenesis between two adjacent populations of freshly captured common spiny mice (Acomys cahirinus) during both winter and summer. Mice were captured from north- and south-facing slopes (NFS and SFS) of the same valley that represent 'Mediterranean' and 'Desert' habitats, respectively. Oxygen consumption and body temperature responses to an injection of exogenous noradrenaline (NA) were higher during the winter than during the summer. in addition, SFS mice had a lower body temperature response to NA during the summer than the other groups of mice. This suggests that heat dissipation is likely to have been greatest in SFS mice during the summer. Overall this study shows that seasonal acclimatization of NST mechanisms is an important trait for small mammals that inhabit the Mediterranean ecosystem. Differences in physiological capabilities can occur temporally within populations across seasons, and spatially between populations that are only a short distance (200-500 m) apart.
Resumo:
Transient absorption spectroscopy (TAS) has been used to study the interfacial electron-transfer reaction between photogenerated electrons in nanocrystalline titanium dioxide (TiO2) films and molecular oxygen. TiO2 films from three different starting materials (TiO2 anatase colloidal paste and commercial anatase/rutile powders Degussa TiO2 P25 and VP TiO2 P90) have been investigated in the presence of ethanol as a hole scavenger. Separate investigations on the photocatalytic oxygen consumption by the films have also been performed with an oxygen membrane polarographic detector. Results show that a correlation exists between the electron dynamics of oxygen consumption observed by TAS and the rate of oxygen consumption through the photocatalytic process. The highest activity and the fastest oxygen reduction dynamics were observed with films fabricated from anatase TiO2 colloidal paste. The use of TAS as a tool for the prediction of the photocatalytic activities of the materials is discussed. TAS studies indicate that the rate of reduction of molecular oxygen is limited by interfacial electron-transfer kinetics rather than by the electron trapping/detrapping dynamics within the TiO2 particles.
Resumo:
Quantitative scaling relationships among body mass, temperature and metabolic rate of organisms are still controversial, while resolution may be further complicated through the use of different and possibly inappropriate approaches to statistical analysis. We propose the application of a modelling strategy based on the theoretical approach of Akaike's information criteria and non-linear model fitting (nlm). Accordingly, we collated and modelled available data at intraspecific level on the individual standard metabolic rate of Antarctic microarthropods as a function of body mass (M), temperature (T), species identity (S) and high rank taxa to which species belong (G) and tested predictions from metabolic scaling theory (mass-metabolism allometric exponent b = 0.75, activation energy range 0.2-1.2 eV). We also performed allometric analysis based on logarithmic transformations (lm). Conclusions from lm and nlm approaches were different. Best-supported models from lm incorporated T, M and S. The estimates of the allometric scaling exponent linking body mass and metabolic rate resulted in a value of 0.696 +/- 0.105 (mean +/- 95% CI). In contrast, the four best-supported nlm models suggested that both the scaling exponent and activation energy significantly vary across the high rank taxa (Collembola, Cryptostigmata, Mesostigmata and Prostigmata) to which species belong, with mean values of b ranging from about 0.6 to 0.8. We therefore reached two conclusions: 1, published analyses of arthropod metabolism based on logarithmic data may be biased by data transformation; 2, non-linear models applied to Antarctic microarthropod metabolic rate suggest that intraspecific scaling of standard metabolic rate in Antarctic microarthropods is highly variable and can be characterised by scaling exponents that greatly vary within taxa, which may have biased previous interspecific comparisons that neglected intraspecific variability.
Resumo:
Organismal metabolic rates influence many ecological processes, and the mass-specific metabolic rate of organisms decreases with increasing body mass according to a power law. The exponent in this equation is commonly thought to be the three-quarter-power of body mass, determined by fundamental physical laws that extend across taxa. However, recent work has cast doubt as to the universality of this relationship, the value of 0.75 being an interspecies 'average' of scaling exponents that vary naturally between certain boundaries. There is growing evidence that metabolic scaling varies significantly between even closely related species, and that different values can be associated with lifestyle, activity and metabolic rates. Here we show that the value of the metabolic scaling exponent varies within a group of marine ectotherms, chitons (Mollusca: Polyplacophora: Mopaliidae), and that differences in the scaling relationship may be linked to species-specific adaptations to different but overlapping microhabitats. Oxygen consumption rates of six closely related, co-occurring chiton species from the eastern Pacific (Vancouver Island, British Columbia) were examined under controlled experimental conditions. Results show that the scaling exponent varies between species (between 0.64 and 0.91). Different activity levels, metabolic rates and lifestyle may explain this variation. The interspecific scaling exponent in these data is not significantly different from the archetypal 0.75 value, even though five out of six species-specific values are significantly different from that value. Our data suggest that studies using commonly accepted values such as 0.75 derived from theoretical models to extrapolate metabolic data of species to population or community levels should consider the likely variation in exponents that exists in the real world, or seek to encompass such error in their models. This study, as in numerous previous ones, demonstrates that scaling exponents show large, naturally occurring variation, and provides more evidence against the existence of a universal scaling law. © 2012 Elsevier B.V.
Resumo:
Responses by marine species to ocean acidification (OA) have recently been shown to be modulated by external factors including temperature, food supply and salinity. However the role of a fundamental biological parameter relevant to all organisms, that of body size, in governing responses to multiple stressors has been almost entirely overlooked. Recent consensus suggests allometric scaling of metabolism with body size differs between species, the commonly cited 'universal' mass scaling exponent (b) of A3/4 representing an average of exponents that naturally vary. One model, the Metabolic-Level Boundaries hypothesis, provides a testable prediction: that b will decrease within species under increasing temperature. However, no previous studies have examined how metabolic scaling may be directly affected by OA. We acclimated a wide body-mass range of three common NE Atlantic echinoderms (the sea star Asterias rubens, the brittlestars Ophiothrix fragilis and Amphiura filiformis) to two levels of pCO(2) and three temperatures, and metabolic rates were determined using closed-chamber respirometry. The results show that contrary to some models these echinoderm species possess a notable degree of stability in metabolic scaling under different abiotic conditions; the mass scaling exponent (b) varied in value between species, but not within species under different conditions. Additionally, we found no effect of OA on metabolic rates in any species. These data suggest responses to abiotic stressors are not modulated by body size in these species, as reflected in the stability of the metabolic scaling relationship. Such equivalence in response across ontogenetic size ranges has important implications for the stability of ecological food webs.
Resumo:
BACKGROUND: Improving diet and lifestyle is important for prevention of cardiovascular disease (CVD). Observational evidence suggests that increasing fruit and vegetable (FV) consumption may lower CVD risk, largely through modulation of established risk factors, but intervention data are required to fully elucidate the mechanisms by which FVs exert benefits on vascular health.
OBJECTIVE: The aim of this study was to examine the dose-response effect of FV intake on cardiovascular risk factors in adults at high CVD risk.
METHODS: This was a randomized controlled parallel group study involving overweight adults (BMI: >27 and ≤35 kg/m(2)) with a habitually low FV intake (≤160 g/d) and a high total risk of developing CVD (estimated ≥20% over 10 y). After a 4-wk run-in period where FV intake was limited to <2 portions/d (<160 g/d), 92 eligible participants were randomly assigned to 1 of 3 groups: to consume either 2, 4, or 7 portions (equivalent to 160 g, 320 g, or 560 g, respectively) of FVs daily for 12 consecutive weeks. Fasting venous blood samples were collected at baseline (week 4) and post-intervention (week 16) for analysis of lipid fractions and high-sensitivity C-reactive protein (hsCRP) concentrations. Compliance with the FV intervention was determined with use of self-reported FV intake and biomarkers of micronutrient status. Ambulatory blood pressure and body composition were also measured pre- and post-intervention.
RESULTS: A total of 89 participants completed the study and body composition remained stable throughout the intervention period. Despite good compliance with the intervention, no significant difference was found between the FV groups for change in measures of ambulatory blood pressure, plasma lipids, or hsCRP concentrations.
CONCLUSIONS: There was no evidence of a dose-response effect of FV intake on conventional CVD risk factors measured in overweight adults at high CVD risk. This trial was registered at clinicaltrials.gov as NCT00874341.
Resumo:
The ecological quality of lakes and other surface water bodies in the European Union is determined by the quality of the structure and functioning of the aquatic ecosystem. The depletion rate of oxygen in the hypolimnion is an important process in thermally stratified lakes and the distribution of consumption between water and sediment an important structural characteristic. It is shown that the variation of volumetric oxygen consumption rate with trophic state can be used to select lake water total phosphorus and chlorophyll concentrations that correspond to changes in the functioning of the lake. Lake morphometry has little effect on this aspect of lake function and the relative amount of oxygen consumption in the water and sediment changes only a little with trophic state, most of the consumption being in the water. Suggestions for the reference condition, good and moderate ecological quality are made using the changes in this aspect of lake function and they are presented as lake water total phosphorus and chlorophyll concentration.
Resumo:
Background: Parenteral nutrition is central to the care of very immature infants. Current international recommendations favor higher amino acid intakes and fish oil–containing lipid emulsions. Objective: The aim of this trial was to compare 1) the effects of high [immediate recommended daily intake (Imm-RDI)] and low [incremental introduction of amino acids (Inc-AAs)] parenteral amino acid delivery within 24 h of birth on body composition and 2) the effect of a multicomponent lipid emulsion containing 30% soybean oil, 30% medium-chain triglycerides, 25% olive oil, and 15% fish oil (SMOF) with that of soybean oil (SO)-based lipid emulsion on intrahepatocellular lipid (IHCL) content. Design: We conducted a 2-by-2 factorial, double-blind, multicenter randomized controlled trial. Results: We randomly assigned 168 infants born at ,31 wk of gestation. We evaluated outcomes at term in 133 infants. There were no significant differences between Imm-RDI and Inc-AA groups for nonadipose mass [adjusted mean difference: 1.0 g (95% CI: 2108, 111 g; P = 0.98)] or between SMOF and SO groups for IHCL [adjusted mean SMOF:SO ratio: 1.1 (95% CI: 0.8, 1.6; P = 0.58]. SMOF does not affect IHCL content. There was a significant interaction (P = 0.05) between the 2 interventions for nonadipose mass. There were no significant interactions between group differences for either primary outcome measure after adjusting for additional confounders. Imm-RDI infants were more likely than Inc-AA infants to have blood urea nitrogen concentrations .7 mmol/L or .10 mmol/L, respectively (75% compared with 49%, P , 0.01; 49% compared with 18%, P , 0.01). Head circumference at term was smaller in the Imm-RDI group [mean difference: 20.8 cm (95% CI: 21.5, 20.1 cm; P = 0.02)]. There were no significant differences in any prespecified secondary outcomes, including adiposity, liver function tests, incidence of conjugated hyperbilirubinemia, weight, length, mortality, and brain volumes. Conclusion: Imm-RDI of parenteral amino acids does not benefit body composition or growth to term and may be harmful. This trial was registered at www.isrctn.com as ISRCTN29665319 and at eudract.ema.europa.eu as EudraCT 2009-016731-34.
Resumo:
Introdução: Os parâmetros metabólicos durante a marcha normal e a sua regulação são importantes devido ao metabolismo oxidativo ser o principal meio através do qual o organismo humano gera energia para realizar as atividades do quotidiano. Nem sempre a marcha é realizada de forma independente e necessita do apoio de auxiliares de marcha, como o tripé, que tem por função ampliar a base de sustentação e melhorar o equilíbrio. Objetivo: Analisar a influência de utilização de um tripé na marcha, na despesa energética em jovens e idosos saudáveis Métodos: Realizou-se um estudo observacional transversal numa amostra de 21 voluntários, com idade entre 18 a 25 anos e mais ou igual a 60 anos. Realizaram-se as avaliações com o Cosmed K4b2 (Cosmed, Rome, Italy), sendo através do mesmo que os dados foram recolhidos. Foi utilizado o teste de Friedman, com P <0,05. Resultados: Os resultados obtidos para o gasto energético nos jovens foram inferiores aos valores obtidos pelos idosos. Relativamente ao metabolismo energético o substrato energético utilizado pelos jovens foi o proteico e o lipídico pelos idosos. Entre sexos foram os homens quem tiveram um maior gasto energético. Conclusão: O uso do tripé durante a marcha não influencia o gasto energético em adultos jovens e/ou idosos saudáveis.