998 resultados para Aeronáutica
Resumo:
La predicción de energía eólica ha desempeñado en la última década un papel fundamental en el aprovechamiento de este recurso renovable, ya que permite reducir el impacto que tiene la naturaleza fluctuante del viento en la actividad de diversos agentes implicados en su integración, tales como el operador del sistema o los agentes del mercado eléctrico. Los altos niveles de penetración eólica alcanzados recientemente por algunos países han puesto de manifiesto la necesidad de mejorar las predicciones durante eventos en los que se experimenta una variación importante de la potencia generada por un parque o un conjunto de ellos en un tiempo relativamente corto (del orden de unas pocas horas). Estos eventos, conocidos como rampas, no tienen una única causa, ya que pueden estar motivados por procesos meteorológicos que se dan en muy diferentes escalas espacio-temporales, desde el paso de grandes frentes en la macroescala a procesos convectivos locales como tormentas. Además, el propio proceso de conversión del viento en energía eléctrica juega un papel relevante en la ocurrencia de rampas debido, entre otros factores, a la relación no lineal que impone la curva de potencia del aerogenerador, la desalineación de la máquina con respecto al viento y la interacción aerodinámica entre aerogeneradores. En este trabajo se aborda la aplicación de modelos estadísticos a la predicción de rampas a muy corto plazo. Además, se investiga la relación de este tipo de eventos con procesos atmosféricos en la macroescala. Los modelos se emplean para generar predicciones de punto a partir del modelado estocástico de una serie temporal de potencia generada por un parque eólico. Los horizontes de predicción considerados van de una a seis horas. Como primer paso, se ha elaborado una metodología para caracterizar rampas en series temporales. La denominada función-rampa está basada en la transformada wavelet y proporciona un índice en cada paso temporal. Este índice caracteriza la intensidad de rampa en base a los gradientes de potencia experimentados en un rango determinado de escalas temporales. Se han implementado tres tipos de modelos predictivos de cara a evaluar el papel que juega la complejidad de un modelo en su desempeño: modelos lineales autorregresivos (AR), modelos de coeficientes variables (VCMs) y modelos basado en redes neuronales (ANNs). Los modelos se han entrenado en base a la minimización del error cuadrático medio y la configuración de cada uno de ellos se ha determinado mediante validación cruzada. De cara a analizar la contribución del estado macroescalar de la atmósfera en la predicción de rampas, se ha propuesto una metodología que permite extraer, a partir de las salidas de modelos meteorológicos, información relevante para explicar la ocurrencia de estos eventos. La metodología se basa en el análisis de componentes principales (PCA) para la síntesis de la datos de la atmósfera y en el uso de la información mutua (MI) para estimar la dependencia no lineal entre dos señales. Esta metodología se ha aplicado a datos de reanálisis generados con un modelo de circulación general (GCM) de cara a generar variables exógenas que posteriormente se han introducido en los modelos predictivos. Los casos de estudio considerados corresponden a dos parques eólicos ubicados en España. Los resultados muestran que el modelado de la serie de potencias permitió una mejora notable con respecto al modelo predictivo de referencia (la persistencia) y que al añadir información de la macroescala se obtuvieron mejoras adicionales del mismo orden. Estas mejoras resultaron mayores para el caso de rampas de bajada. Los resultados también indican distintos grados de conexión entre la macroescala y la ocurrencia de rampas en los dos parques considerados. Abstract One of the main drawbacks of wind energy is that it exhibits intermittent generation greatly depending on environmental conditions. Wind power forecasting has proven to be an effective tool for facilitating wind power integration from both the technical and the economical perspective. Indeed, system operators and energy traders benefit from the use of forecasting techniques, because the reduction of the inherent uncertainty of wind power allows them the adoption of optimal decisions. Wind power integration imposes new challenges as higher wind penetration levels are attained. Wind power ramp forecasting is an example of such a recent topic of interest. The term ramp makes reference to a large and rapid variation (1-4 hours) observed in the wind power output of a wind farm or portfolio. Ramp events can be motivated by a broad number of meteorological processes that occur at different time/spatial scales, from the passage of large-scale frontal systems to local processes such as thunderstorms and thermally-driven flows. Ramp events may also be conditioned by features related to the wind-to-power conversion process, such as yaw misalignment, the wind turbine shut-down and the aerodynamic interaction between wind turbines of a wind farm (wake effect). This work is devoted to wind power ramp forecasting, with special focus on the connection between the global scale and ramp events observed at the wind farm level. The framework of this study is the point-forecasting approach. Time series based models were implemented for very short-term prediction, this being characterised by prediction horizons up to six hours ahead. As a first step, a methodology to characterise ramps within a wind power time series was proposed. The so-called ramp function is based on the wavelet transform and it provides a continuous index related to the ramp intensity at each time step. The underlying idea is that ramps are characterised by high power output gradients evaluated under different time scales. A number of state-of-the-art time series based models were considered, namely linear autoregressive (AR) models, varying-coefficient models (VCMs) and artificial neural networks (ANNs). This allowed us to gain insights into how the complexity of the model contributes to the accuracy of the wind power time series modelling. The models were trained in base of a mean squared error criterion and the final set-up of each model was determined through cross-validation techniques. In order to investigate the contribution of the global scale into wind power ramp forecasting, a methodological proposal to identify features in atmospheric raw data that are relevant for explaining wind power ramp events was presented. The proposed methodology is based on two techniques: principal component analysis (PCA) for atmospheric data compression and mutual information (MI) for assessing non-linear dependence between variables. The methodology was applied to reanalysis data generated with a general circulation model (GCM). This allowed for the elaboration of explanatory variables meaningful for ramp forecasting that were utilized as exogenous variables by the forecasting models. The study covered two wind farms located in Spain. All the models outperformed the reference model (the persistence) during both ramp and non-ramp situations. Adding atmospheric information had a noticeable impact on the forecasting performance, specially during ramp-down events. Results also suggested different levels of connection between the ramp occurrence at the wind farm level and the global scale.
Resumo:
Coherently driven, dissipative nonlinear oscillators,(driving kept permanently in phase with the oscillators response) are proposed as systems with interesting dynamics. Results for simple, preliminary examples, which do not show chaotic behavior, are briefly discussed.
Resumo:
Electron thermal conduction in a not quite collisional unmagnetlzed plasma is analysed. The failure of classical results for temperature scale-length up to 100 times larger than thermal mean-free-path for electron scattering, and large ion-charge number Z , is discussed. Recent results from a nonlocal model of conduction at large Z are reviewed. Closed form expressions for Braginskii's coefficients a ,/3 , y for Z =0(1) are derived. An extension of the nonlocal model for Z =0(1) is discussed.
Resumo:
Basic effects and dynamical and electrical contact issues in the physics of (electrodynamic space) bare tethers are discussed. Scientific experiments and powerpropulsion applications, including a paradoxical use of bare tethers in outer-planet exploration,are considered.
Resumo:
Smoothing of plasma ablated from a laser target under weakly nonuniform irradiation is discussed. Conduction is assumed restricted to a quasisteady layer enclosing the critical surface (large pellet or focal spot, and long, low-intensity, short-wavelength pulse). Light refraction can make the ablated plasma unstable.
Resumo:
The coherent three-wave interaction, with linear growth in the higher frequency wave and damping in the two other waves, is reconsidered; for equal dampings, the resulting three-dimensional (3-D) flow of a relative phase and just two amplitudes behaved chaotically, no matter how small the growth of the unstable wave. The general case of different dampings is studied here to test whether, and how, that hard scenario for chaos is preserved in passing from 3-D to four-dimensional flows. It is found that the wave with higher damping is partially slaved to the other damped wave; this retains a feature of the original problem an invariant surface that meets an unstable fixed point, at zero growth rate! that gave rise to the chaotic attractor and determined its structure, and suggests that the sudden transition to chaos should appear in more complex wave interactions.
Resumo:
It was recently suggested that the magnetic field created by the current of a bare tether strongly reduces its own electron-collection capability when a magnetic separatrix disconnecting ambient magnetized plasma from tether extends beyond its electric sheath. It is here shown that current reduction by the self-field depends on the ratio meterizing bias and current profiles along the tether (Lt tether length, characteristic length gauging ohmic effects) and on a new dimensionless number Ks involving ambient and tether parameters. Current reduction is weaker the lower Ks and L*/ Lt, which depend critically on the type of cross section: Ks varies as R5/3, h2/3R, and h2/3 1/4 width for wires, round tethers conductive only in a thin layer, and thin tapes, respectively; L* varies as R2/3 for wires and as h2/3 for tapes and round tethers conductive in a layer (R radius, h thickness). Self-field effects are fully negligible for the last two types of cross sections whatever the mode of operation. In practical efficient tether systems having L*/Lt low, maximum current reduction in case of wires is again negligible for power generation; for deorbiting, reduction is <1% for a 10 km tether and 15% for a 20 km tether. In the reboost mode there are no effects for Ks below some threshold; moderate effects may occur in practical but heavy reboost-wire systems that need no dedicated solar power.
Resumo:
A novel methodology for damage detection and location in structures is proposed. The methodology is based on strain measurements and consists in the development of strain field pattern recognition techniques. The aforementioned are based on PCA (principal component analysis) and damage indices (T 2 and Q). We propose the use of fiber Bragg gratings (FBGs) as strain sensors
Resumo:
FBGs are excellent strain sensors, because of its low size and multiplexing capability. Tens to hundred of sensors may be embedded into a structure, as it has already been demonstrated. Nevertheless, they only afford strain measurements at local points, so unless the damage affects the strain readings in a distinguishable manner, damage will go undetected. This paper show the experimental results obtained on the wing of a UAV, instrumented with 32 FBGs, before and after small damages were introduced. The PCA algorithm was able to distinguish the damage cases, even for small cracks. Principal Component Analysis (PCA) is a technique of multivariable analysis to reduce a complex data set to a lower dimension and reveal some hidden patterns that underlie.
Resumo:
The electron-retarding range of the current-voltage characteristic of a flat Langmuir probe perpendicular to a strong magnetic field in a fully ionized plasma is analysed allowing for anomalous (Bohm) cross-field transport and temperature changes in the collection process. With probe size and ion thermal gyroradius comparable, and smaller than the electron mean free path, there is an outer quasineutral region with ion viscosity determinant in allowing nonambipolar parallel and cross flow. A potential overshoot lying either at the base or inside the quasineutral region both makes ions follow Boltzmann's law at negative bias and extends the electron-retarding range to probe bias e(j)p ~ +2Too. Electron heating and cooling occur roughly at positive and negative bias, with a re-minimum around efa ~ - 2 7 ^ ; far from the probe heat conduction cools and heats electrons at and radially away from the probe axis, respectively. The potential overshoot with no thermal effects would reduce the electron current Ie, making the In Ie versus 4>p graph downwards-concave,but cooling further reduces Ie substantially, and may tilt the slope upwards past the temperature minimum. The domain of strict validity of our analysis is narrow in case of low ion mass (deuterium), breaking down with the ion Boltzmann law.
Resumo:
The present article shows a procedure to predict the flutter speed based on real-time tuning of a quasi non-linear aeroelastic model. A two-dimensional non-linear (freeplay) aeroeslastic model is implemented inMatLab/Simulink with incompressible aerodynamic conditions. A comparison with real compressible conditions is provided. Once the numerical validation is accomplished, a parametric aeroelastic model is built in order to describe the proposed procedure and contribute to reduce the number of flight hours needed to expand the flutter envelope.
Resumo:
Two extensions of the fast and accurate special perturbation method recently developed by Peláez et al. are presented for respectively elliptic and hyperbolic motion. A comparison with Peláez?s method and with the very efficient Stiefel- Scheifele?s method, for the problems of oblate Earth plus Moon and continuous radial thrust, shows that the new formulations can appreciably improve the accuracy of Peláez?s method and have a better performance of Stiefel-Scheifele?s method. Future work will be to include the two new formulations and the original one due to Peláez into an adaptive scheme for highly accurate orbit propagation