985 resultados para Adhesive joints
Resumo:
The work presented in this thesis is concerned with the dynamic behaviour of structural joints which are both loaded, and excited, normal to the joint interface. Since the forces on joints are transmitted through their interface, the surface texture of joints was carefully examined. A computerised surface measuring system was developed and computer programs were written. Surface flatness was functionally defined, measured and quantised into a form suitable for the theoretical calculation of the joint stiffness. Dynamic stiffness and damping were measured at various preloads for a range of joints with different surface textures. Dry clean and lubricated joints were tested and the results indicated an increase in damping for the lubricated joints of between 30 to 100 times. A theoretical model for the computation of the stiffness of dry clean joints was built. The model is based on the theory that the elastic recovery of joints is due to the recovery of the material behind the loaded asperities. It takes into account, in a quantitative manner, the flatness deviations present on the surfaces of the joint. The theoretical results were found to be in good agreement with those measured experimentally. It was also found that theoretical assessment of the joint stiffness could be carried out using a different model based on the recovery of loaded asperities into a spherical form. Stepwise procedures are given in order to design a joint having a particular stiffness. A theoretical model for the loss factor of dry clean joints was built. The theoretical results are in reasonable agreement with those experimentally measured. The theoretical models for the stiffness and loss factor were employed to evaluate the second natural frequency of the test rig. The results are in good agreement with the experimentally measured natural frequencies.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
This thesis is concerned with the experimental and theoretical investigation into the compression bond of column longitudinal reinforcement in the transference of axial load from a reinforced concrete column to a base. Experimental work includes twelve tests with square twisted bars and twenty four tests with ribbed bars. The effects of bar size, anchorage length in the base, plan area of the base, provision of bae tensile reinforcement, links around the column bars in the base, plan area of column and concrete compressive strength were investigated in the tests. The tests indicated that the strength of the compression anchorage of deformed reinforcing steel in the concrete was primarily dependent on the concrete strength and the resistance to bursting, which may be available within the anchorage . It was shown in the tests without concreted columns that due to a large containment over the bars in the foundation, failure occurred due to the breakdown of bond followed by the slip of the column bars along the anchorage length. The experimental work showed that the bar size , the stress in the bar, the anchorage length, provision of the transverse steel and the concrete compressive strength significantly affect the bond stress at failure. The ultimate bond stress decreases as the anchorage length is increased, while the ultimate bond stress increases with increasing each of the remainder parameters. Tests with concreted columns also indicated that a section of the column contributed to the bond length in the foundation by acting as an extra anchorage length. The theoretical work is based on the Mindlin equation( 3), an analytical method used in conjunction with finite difference calculus. The theory is used to plot the distribution of bond stress in the elastic and the elastic-plastic stage of behaviour. The theory is also used to plot the load-vertical displacement relationship of the column bars in the anchorage length, and also to determine the theoretical failure load of foundation. The theoretical solutions are in good agreement with the experimental results and the distribution of bond stress is shown to be significantly influenced by the bar stiffness factor K. A comparison of the experimental results with the current codes shows that the bond stresses currently used are low and in particular, CPIlO(56) specifies very conservative design bond stresses .
Resumo:
This thesis illustrates the development of tailor-made, partially hydrated skin adhesive hydrogels as a vehicle for the topical delivery of moisturising agents. Maintaining an optimum hydration level of the stratum corneum ensures that the barrier properties of the skin are preserved. An unsaturated ionic monomer 2-acrylamido-2-methylpropanesulfonic acid sodium salt, glycerol, water, a photoinitiator Irgacure 184 and crosslinker Ebacryl II facilitated the production of monophasic sheet skin adhesives using photopolymerisation. The exploration and modification of the hydrogel components coupled with their influence on the adhesive and dynamic mechanical behaviour led to the development of novel monophasic and biphasic hydrogels. Biphasic pregels comprising of a hydrophobic monomer (epoxidised soybean oil acrylate, lauryl acrylate or stearyl acrylate) micellised with a non ionic surfactant Tween 60 allowed a homogeneous distribution throughout a predominantly hydrophilic phase (2-acrylamido-2-methylpropanesulfonic acid sodium salt, 4-acryloylmorpholine, glycerol and water). Further development of biphasic hydrogel technology led to the incorporation of preformed commercial O/W emulsions (Acronal, Flexbond 150, DM137 or Texicryl 13056WB) allowing the hydrophobic component to be added without prior stabilisation. The topical release of moisturising agents 2-pyrrolidone-5-carboxylic acid, lactobionic acid and d-calcium pantothenate results in the deposition onto the skin by an initial burst mechanism. The hydration level of the stratum corneum was measured using a Comeometer CM 825, Skin Reader MY810 or FT-ATR. The use of hydrophilic actives in conjunction with lipophilic agents for example Vitamin E or Jojoba oil provided an occlusive barrier, which reduced the rate of transepidermal water loss. The partition coefficients of the release agents provided invaluable information which enabled the appropriate gel technology to be selected. In summary the synthetic studies led to the understanding and generation of transferable technology. This enabled the synthesis of novel vehicles allowing an array of actives with a range of solubilities to be incorporated.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
The aim of this study was to investigate the adhesive properties of an in-house amino-propyltrimethoxysilane-methylenebisacrylamide (APTMS-MBA) siloxane system and compare them with a commercially available adhesive, n-butyl cyanoacrylate (nBCA). The ability of the material to perform as a soft tissue adhesive was established by measuring the physical (bond strength, curing time) and biological (cytotoxicity) properties of the adhesives on cartilage. Complementary physical techniques, X-ray photoelectron spectroscopy, Raman and infrared imaging, enabled the mode of action of the adhesive to the cartilage surface to be determined. Adhesion strength to cartilage was measured using a simple butt joint test after storage in phosphate-buffered saline solution at 37°C for periods up to 1 month. The adhesives were also characterised using two in vitro biological techniques. A live/dead stain assay enabled a measure of the viability of chondrocytes attached to the two adhesives to be made. A water-soluble tetrazolium assay was carried out using two different cell types, human dermal fibroblasts and ovine meniscal chondrocytes, in order to measure material cytotoxicity as a function of both supernatant concentration and time. IR imaging of the surface of cartilage treated with APTMS-MBA siloxane adhesive indicated that the adhesive penetrated the tissue surface marginally compared to nBCA which showed a greater depth of penetration. The curing time and adhesion strength values for APTMS-MBA siloxane and nBCA adhesives were measured to be 60 s/0.23 MPa and 38 min/0.62 MPa, respectively. These materials were found to be significantly stronger than either commercially available fibrin (0.02 MPa) or gelatin resorcinol formaldehyde (GRF) adhesives (0.1 MPa) (P <0.01). Cell culture experiments revealed that APTMS-MBA siloxane adhesive induced 2% cell death compared to 95% for the nBCA adhesive, which extended to a depth of approximately 100-150 μm into the cartilage surface. The WST-1 assay demonstrated that APTMS-MBA siloxane was significantly less cytotoxic than nBCA adhesive as an undiluted conditioned supernatant (P <0.001). These results suggest that the APTMS-MBA siloxane may be a useful adhesive for medical applications. © VSP 2005.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
In this note, the authors investigate whether the gas-liquid critical point can remain stable with respect to solidification for narrow attractive interactions down to the Baxter limit. Using a crude cell theory, the authors estimate the necessary conditions for this to be true. Possible realizations are briefly discussed.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
This research presents a new design of an adjustable suture that could provide a better intraocular pressure (IOP) control in the post treatment of trabeculectomy surgery and limit associated complication with the current suturing techniques. A better control in tension suture brings a great deal of advantages to this surgical technique compared with the traditional adjustable suture. A length adjustment can be added in advance to a 10-0 nylon suture which enables suture tension to be released during the postoperative period of trabeculectomy surgery. This adjustment has a D-ring geometry made of 10-0 nylon suture adhered to a 10-0 nylon surgical suture which is used to close the scalar flap. The D ring was adhered with about 180 microdroplet of Loctite 4311that was found to form a strong joint to connect the D ring to the main 10-0 nylon suture and strong enough to carry the added tension instead after cutting the central suture between the two joints of the D ring. The geometry of adjustment is the key factor of maintaining the IOP at the normal range and keeping the scleral flap tight enough and secure so that aqueous humor continues to percolate under the subconjunctiva. It has been found that a 365, and 450 µm length extensions can release suture tension postoperatively and relieve the intraocular pressure within the eye by 33, and 66% respectively. The fabrication process of the new adjustable suture was divided into two steps: fabrication of micro jig and forming microdroplets. A micro jig was fabricated in order to form and bond a precise length extension to the new design of the adjustable suture. In addition, a new liquid separation technique has been followed in this study in order to generate micro adhesive droplets as small as 50µm for bonding the new adjustable suture structure.