829 resultados para Adaptive Equalization. Neural Networks. Optic Systems. Neural Equalizer


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lake Dianchi is a shallow and turbid lake, located in Southwest China. Since 1985, Lake Dianchi has experienced severe cyanabacterial blooms (dominated by Microcystis spp.). In extreme cases, the algal cell densities have exceeded three billion cells per liter. To predict and elucidate the population dynamics ofMicrocystis spp. in Lake Dianchi, a neural network based model was developed. The correlation coefficient (R 2) between the predicted algal concentrations by the model and the observed values was 0.911. Sensitivity analysis was performed to clarify the algal dynamics to the changes of environmental factors. The results of a sensitivity analysis of the neural network model suggested that small increases in pH could cause significantly reduced algal abundance. Further investigations on raw data showed that the response of Microcystis spp. concentration to pH increase was dependent on algal biomass and pH level. When Microcystis spp. population and pH were moderate or low, the response of Microcystis spp. population would be more likely to be positive in Lake Dianchi; contrarily, Microcystis spp. population in Lake Dianchi would be more likely to show negative response to pH increase when Microcystis spp. population and pH were high. The paper concluded that the extremely high concentration of algal population and high pH could explain the distinctive response of Microcystis spp. population to +1 SD (standard deviation) pH increase in Lake Dianchi. And the paper also elucidated the algal dynamics to changes of other environmental factors. One SD increase of water temperature (WT) had strongest positive relationship with Microcystis spp. biomass. Chemical oxygen demand (COD) and total phosphorus (TP) had strong positive effect on Microcystis spp. abundance while total nitrogen (TN), biological oxygen demand in five days (BOD5), and dissolved oxygen had only weak relationship with Microcystis spp. concentration. And transparency (Tr) had moderate positive relationship with Microcystis spp. concentration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lake Dianchi is one of the most extensively impacted freshwater lakes by algal blooms. To investigate the response of dominant algal genera, neural networks were applied to model the relationship between water quality parameters and the biomass of four dominant genera (Microcystic spp., Anabaena sp., Quadricauda (Turp.) Breb, Pediastrum Mey) in Dianchi. Results showed that the timing and magnitude of algal blooms of Microcystic spp., nabaena sp., Quadricauda (Turp.) Breb, and Pediastrum Mey in Dianchi could be successfully predicted. The evaluation of environmental factors showed that pH had more significant impact on concentrations of all the four dominant algal genera than the nutrient factors, such as total phosphorus and total nitrogen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents an two weighted neural network approach to determine the delay time for a heating, ventilating and air-conditioning (HVAC) plan to respond to control actions. The two weighted neural network is a fully connected four-layer network. An acceleration technique was used to improve the General Delta Rule for the learning process. Experimental data for heating and cooling modes were used with both the two weighted neural network and a traditional mathematical method to determine the delay time. The results show that two weighted neural networks can be used effectively determining the delay time for AVAC systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

On the basis of DBF nets proposed by Wang Shoujue, the model and properties of DBF neural network were discussed in this paper. When applied in pattern recognition, the algorithm and implement on hardware were presented respectively. We did experiments on recognition of omnidirectionally oriented rigid objects on the same level, using direction basis function neural networks, which acts by the method of covering the high dimensional geometrical distribution of the sample set in the feature space. Many animal and vehicle models (even with rather similar shapes) were recognized omnidirectionally thousands of times. For total 8800 tests, the correct recognition rate is 98.75%, the error rate and the rejection rate are 0.5% and 1.25% respectively. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dynamic Power Management (DPM) is a technique to reduce power consumption of electronic system by selectively shutting down idle components. In this article we try to introduce back propagation network and radial basis network into the research of the system-level power management policies. We proposed two PM policies-Back propagation Power Management (BPPM) and Radial Basis Function Power Management (RBFPM) which are based on Artificial Neural Networks (ANN). Our experiments show that the two power management policies greatly lowered the system-level power consumption and have higher performance than traditional Power Management(PM) techniques-BPPM is 1.09-competitive and RBFPM is 1.08-competitive vs. 1.79, 1.45, 1.18-competitive separately for traditional timeout PM, adaptive predictive PM and stochastic PM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we firstly give the nature of 'hypersausages', study its structure and training of the network, then discuss the nature of it by way of experimenting with ORL face database, and finally, verify its unsurpassable advantages compared with other means.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A neural network-based process model is proposed to optimize the semiconductor manufacturing process. Being different from some works in several research groups which developed neural network-based models to predict process quality with a set of process variables of only single manufacturing step, we applied this model to wafer fabrication parameters control and wafer lot yield optimization. The original data are collected from a wafer fabrication line, including technological parameters and wafer test results. The wafer lot yield is taken as the optimization target. Learning from historical technological records and wafer test results, the model can predict the wafer yield. To eliminate the "bad" or noisy samples from the sample set, an experimental method was used to determine the number of hidden units so that both good learning ability and prediction capability can be obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we firstly give the nature of 'hypersausages', study its structure and training of the network, then discuss the nature of it by way of experimenting with ORL face database, and finally, verify its unsurpassable advantages compared with other means.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We continue the study of spiking neural P systems by considering these computing devices as binary string generators: the set of spike trains of halting computations of a given system constitutes the language generated by that system. Although the "direct" generative capacity of spiking neural P systems is rather restricted (some very simple languages cannot be generated in this framework), regular languages are inverse-morphic images of languages of finite spiking neural P systems, and recursively enumerable languages are projections of inverse-morphic images of languages generated by spiking neural P systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Enzymatic hydrolysis of cellulose was highly complex because of the unclear enzymatic mechanism and many factors that affect the heterogeneous system. Therefore, it is difficult to build a theoretical model to study cellulose hydrolysis by cellulase. Artificial neural network (ANN) was used to simulate and predict this enzymatic reaction and compared with the response surface model (RSM). The independent variables were cellulase amount X-1, substrate concentration X-2, and reaction time X-3, and the response variables were reducing sugar concentration Y-1 and transformation rate of the raw material Y-2. The experimental results showed that ANN was much more suitable for studying the kinetics of the enzymatic hydrolysis than RSM. During the simulation process, relative errors produced by the ANN model were apparently smaller than that by RSM except one and the central experimental points. During the prediction process, values produced by the ANN model were much closer to the experimental values than that produced by RSM. These showed that ANN is a persuasive tool that can be used for studying the kinetics of cellulose hydrolysis catalyzed by cellulase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper gives a condition for the global stability of a continuous-time hopfield neural network when its activation function maybe not monotonically increasing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel approach is proposed for the simultaneous optimization of mobile phase pH and gradient steepness in RP-HPLC using artificial neural networks. By presetting the initial and final concentration of the organic solvent, a limited number of experiments with different gradient time and pH value of mobile phase are arranged in the two-dimensional space of mobile phase parameters. The retention behavior of each solute is modeled using an individual artificial neural network. An "early stopping" strategy is adopted to ensure the predicting capability of neural networks. The trained neural networks can be used to predict the retention time of solutes under arbitrary mobile phase conditions in the optimization region. Finally, the optimal separation conditions can be found according to a global resolution function. The effectiveness of this method is validated by optimization of separation conditions for amino acids derivatised by a new fluorescent reagent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel method for the optimization of pH value and composition of mobile phase in HPLC using artificial neural networks and uniform design is proposed. As the first step. seven initial experiments were arranged and run according to uniform design. Then the retention behavior of the solutes is modeled using back-propagation neural networks. A trial method is used to ensure the predicting capability of neural networks. Finally, the optimal separation conditions can be found according to a global resolution function. The effectiveness of this method is validated by optimization of separation conditions for both basic and acidic samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A slab optical waveguide (SOWG) has been used for study of adsorption of both methylene blue (MB) and new methylene blue (NMB) in liquid-solid interface. Adsorption characteristics of MB and NMB on both bare SOWG and silanized SOWG by octadecyltrichlorosilane (ODS) were compared. The simultaneous determinations of both MB and NMB were explored by flow injection SOWG spectrophotometric analysis and artificial neural networks (ANNs) for the first time. Concentrations of MB and NMB were estimated simultaneously with the ANNs. Results obtained with SOWG were compared with those got by conventional UV-visible spectrophotometry. (C) 2003 Elsevier Science B.V All rights reserved.