956 resultados para Acute Myeloid-leukemia
Resumo:
An investigation of (a) month/season-of-birth as a risk factor and (b) month/season-of-treatment initation as a prognostic factor in acute lymphoblastic leukemia (ALL) in children, 0-15 years of age, was conducted. The study population used was that of the Surveillance, Epidemiology, and End Results (SEER) program of the National Cancer Institute and included children diagnosed and treated for ALL from 1973-1986. Two separate sets of analyses using different exclusion criteria led to similar results. Specifically, the inability to reject the null hypothesis of no significant difference in the variation of monthly/seasonal incidence rates among children residing within the 10 SEER sites using either cosinor analysis or one-way analysis of variance. No association was established between month/season of treatment initiation and survival in ALL among children using either Kaplan-Meier or cosinor analysis. In separate Kaplan-Meier analyses, age, gender, and treatment type were each found to be significant univariate prognostic factors for survival, however. ^
Resumo:
The TEL (ETV6)−AML1 (CBFA2) gene fusion is the most common reciprocal chromosomal rearrangement in childhood cancer occurring in ≈25% of the most predominant subtype of leukemia— common acute lymphoblastic leukemia. The TEL-AML1 genomic sequence has been characterized in a pair of monozygotic twins diagnosed at ages 3 years, 6 months and 4 years, 10 months with common acute lymphoblastic leukemia. The twin leukemic DNA shared the same unique (or clonotypic) but nonconstitutive TEL-AML1 fusion sequence. The most plausible explanation for this finding is a single cell origin of the TEL-AML fusion in one fetus in utero, probably as a leukemia-initiating mutation, followed by intraplacental metastasis of clonal progeny to the other twin. Clonal identity is further supported by the finding that the leukemic cells in the two twins shared an identical rearranged IGH allele. These data have implications for the etiology and natural history of childhood leukemia.
Resumo:
The PML/SP100 nuclear bodies (NBs) were first described as discrete subnuclear structures containing the SP100 protein. Subsequently, they were shown to contain the PML protein which is part of the oncogenic PML-RARα hybrid produced by the t(15;17) chromosomal translocation characteristic of acute promyelocytic leukemia. Yet, the physiological role of these nuclear bodies remains unknown. Here, we show that SP100 binds to members of the heterochromatin protein 1 (HP1) families of non-histone chromosomal proteins. Further, we demonstrate that a naturally occurring splice variant of SP100, here called SP100-HMG, is a member of the high mobility group-1 (HMG-1) protein family and may thus possess DNA-binding potential. Both HP1 and SP100-HMG concentrate in the PML/SP100 NBs, and overexpression of SP100 leads to enhanced accumulation of endogenous HP1 in these structures. When bound to a promoter, SP100, SP100-HMG and HP1 behave as transcriptional repressors in transfected mammalian cells. These observations present molecular evidence for an association between the PML/SP100 NBs and the chromatin nuclear compartment. They support a model in which the NBs may play a role in certain aspects of chromatin dynamics.
Resumo:
In acute promyelocytic leukemia (APL), the typical t(15;17) and the rare t(11;17) translocations express, respectively, the PML/RARα and PLZF/RARα fusion proteins (where RARα is retinoic acid receptor α). Herein, we demonstrate that the PLZF and PML proteins interact with each other and colocalize onto nuclear bodies (NBs). Furthermore, induction of PML expression by interferons leads to a recruitment of PLZF onto NBs without increase in the levels of the PLZF protein. PML/RARα and PLZF/RARα localize to the same microspeckled nuclear domains that appear to be common targets for the two fusion proteins in APL. Although PLZF/RARα does not affect the localization of PML, PML/RARα delocalizes the endogenous PLZF protein in t(15;17)-positive NB4 cells, pointing to a hierarchy in the nuclear targeting of these proteins. Thus, our results unify the molecular pathogenesis of APL with at least two different RARα gene translocations and stress the importance of alterations of PLZF and RARα nuclear localizations in this disease.
Resumo:
Epidemiological evidence has suggested that some pediatric leukemias may be initiated in utero and, for some pairs of identical twins with concordant leukemia, this possibility has been strongly endorsed by molecular studies of clonality. Direct evidence for a prenatal origin can only be derived by prospective or retrospective detection of leukemia-specific molecular abnormalities in fetal or newborn samples. We report a PCR-based method that has been developed to scrutinize neonatal blood spots (Guthrie cards) for the presence of numerically infrequent leukemic cells at birth in individuals who subsequently developed leukemia. We demonstrate that unique or clonotypic MLL-AF4 genomic fusion sequences are present and detectable in neonatal blood spots from individuals who were diagnosed with acute lymphoblastic leukemia at ages 5 months to 2 years and, therefore, have arisen during fetal hematopoiesis in utero. This result provides unequivocal evidence for a prenatal initiation of acute leukemia in young patients. The method should be applicable to other fusion genes in children with common subtypes of leukemia and will be of value in attempts to unravel the natural history and etiology of this major subtype of pediatric cancer.
Resumo:
Human telomerase, a cellular reverse transcriptase (hTERT), is a nuclear ribonucleoprotein enzyme complex that catalyzes the synthesis and extension of telomeric DNA. This enzyme is specifically activated in most malignant tumors but is usually inactive in normal somatic cells, suggesting that telomerase plays an important role in cellular immortalization and tumorigenesis. Terminal maturation of tumor cells has been associated with the repression of telomerase activity. Using maturation-sensitive and -resistant NB4 cell lines, we analyzed the pattern of telomerase expression during the therapeutic treatment of acute promyelocytic leukemia (APL) by retinoids. Two pathways leading to the down-regulation of hTERT and telomerase activity were identified. The first pathway results in a rapid down-regulation of telomerase that is associated with retinoic acid receptor (RAR)-dependent maturation of NB4 cells. Furthermore, during NB4 cell maturation, obtained independently of RAR by retinoic X receptor (RXR)-specific agonists (rexinoids), no change in telomerase activity was observed, suggesting that hTERT regulation requires a specific signaling and occurs autonomously. A second pathway of hTERT regulation, identified in the RAR-responsive, maturation-resistant NB4-R1 cell line, results in a down-regulation of telomerase that develops slowly during two weeks of all-trans retinoic acid (ATRA) treatment. This pathway leads to telomere shortening, growth arrest, and cell death, all events that are overcome by ectopic expression of hTERT. These findings demonstrate a clear and full dissociation between the process of tumor cell maturation and the regulation of hTERT mRNA expression and telomerase activity by retinoids. We propose telomerase expression as an efficient and selective target of retinoids in the therapy of tumors.
Resumo:
The translocation found in acute promyelocytic leukemia rearranges the promyelocytic leukemia gene (PML) on chromosome 15 with the retinoic acid receptor alpha (RARalpha) on chromosome 17. This yields a fusion transcript, PML/RARalpha, a transcription factor with reported dominant negative functions in the absence of hormone. Clinical remissions induced with all-trans retinoic acid (RA) treatment in acute promyelocytic leukemia are linked to PML/RARalpha expression in leukemic cells. To evaluate the PML/RARalpha role in myelopoiesis, transgenic mice expressing PML/RARalpha were engineered. A full-length PML/RARalpha cDNA driven by the CD11b promoter was expressed in transgenic mice. Expression was confirmed in the bone marrow with a reverse transcription PCR assay. Basal total white blood cell and granulocyte counts did not appreciably differ between PML/RARalpha transgenic and control mice. Cell sorter analysis of CD11b+ bone marrow cells revealed similar CD11b+ populations in transgenic and control mice. However, in vitro clonal growth assays performed on peripheral blood from transgenic versus control mice revealed a marked reduction of myeloid progenitors, especially in those responding to granulocyte/ macrophage colony-stimulating factor. Granulocyte/macrophage colony-stimulating factor and kit ligand cotreatment did not overcome this inhibition. Impaired myelopoiesis in vivo was shown by stressing these mice with sublethal irradiation. Following irradiation, PML/RARalpha transgenic mice, as compared with controls, more rapidly depressed peripheral white blood cell and granulocyte counts. As expected, nearly all control mice (94.4%) survived irradiation, yet this irradiation was lethal to 45.8% of PML/RARalpha transgenic mice. Lethality was associated with more severe leukopenia in transgenic versus control mice. Retinoic acid treatment of irradiated PML/RARalpha mice enhanced granulocyte recovery. These data suggest that abnormal myelopoiesis due to PML/RARalpha expression is an early event in oncogenic transformation.
Resumo:
Myeloid leukemia M1 cells can be induced for growth arrest and terminal differentiation into macrophages in response to interleukin 6 (IL-6) or leukemia inhibitory factor (LIF). Recently, a large number of cytokines and growth factors have been shown to activate the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. In the case of IL-6 and LIF, which share a signal transducing receptor gp130, STAT3 is specifically tyrosine-phosphorylated and activated by stimulation with each cytokine in various cell types. To know the role of JAK-STAT pathway in M1 differentiation, we have constructed dominant negative forms of STAT3 and established M1 cell lines that constitutively express them. These M1 cells that overexpressed dominant negative forms showed no induction of differentiation-associated markers including Fc gamma receptors, ferritin light chain, and lysozyme after treatment with IL-6. Expression of either c-myb or c-myc was not downregulated. Furthermore, IL-6- and LIF-mediated growth arrest and apoptosis were completely blocked. Thus these findings demonstrate that STAT3 activation is the critical step in a cascade of events that leads to terminal differentiation of M1 cells.
Resumo:
Promyelocytic leukemia zinc finger-retinoic acid receptor a (PLZF-RARalpha), a fusion receptor generated as a result of a variant t(11;17) chromosomal translocation that occurs in a small subset of acute promyelocytic leukemia (APL) patients, has been shown to display a dominant-negative effect against the wild-type RARalpha/retinoid X receptor alpha (RXRalpha). We now show that its N-terminal region (called the POZ-domain), which mediates protein-protein interaction as well as specific nuclear localization of the wild-type PLZF and chimeric PLZF-RARalpha proteins, is primarily responsible for this activity. To further investigate the mechanisms of PLZF-RARalpha action, we have also studied its ligand-receptor, protein-protein, and protein-DNA interaction properties and compared them with those of the promyelocytic leukemia gene (PML)-RARalpha, which is expressed in the majority of APLs as a result of t(15;17) translocation. PLZF-RARalpha and PML-RARalpha have essentially the same ligand-binding affinities and can bind in vitro to retinoic acid response elements (RAREs) as homodimers or heterodimers with RXRalpha. PLZF-RARalpha homodimerization and heterodimerization with RXRalpha were primarily mediated by the POZ-domain and RARalpha sequence, respectively. Despite having identical RARalpha sequences, PLZF-RARalpha and PML-RARalpha homodimers recognized with different affinities distinct RAREs. Furthermore, PLZF-RARalpha could heterodimerize in vitro with the wild-type PLZF, suggesting that it may play a role in leukemogenesis by antagonizing actions of not only the retinoid receptors but also the wild-type PLZF and possibly other POZ-domain-containing regulators. These different protein-protein interactions and the target gene specificities of PLZF-RARalpha and PML-RARalpha may underlie, at least in part, the apparent resistance of APL with t(11;17) to differentiation effects of all-trans-retinoic acid.
Resumo:
PBX1 is a homeobox-containing gene identified as the chromosome 1 participant of the t(1;19) chromosomal translocation of childhood pre-B-cell acute lymphoblastic leukemia. This translocation produces a fusion gene encoding the chimeric oncoprotein E2A-Pbx1, which can induce both acute myeloid and T-lymphoid leukemia in mice. The binding of Pbx1 to DNA is weak; however, both Pbx1 and E2A-Pbx1 exhibit tight binding to specific DNA motifs in conjunction with certain other homeodomain proteins, and E2A-Pbx1 activates transcription through these motifs, whereas Pbx1 does not. In this report, we investigate potential transcriptional functions of Pbx1, using transient expression assays. While no segments of Pbx1 activated transcription, an internal domain of Pbx1 repressed transcription induced by the activation domain of Sp1, but not by the activation domains of VP16 or p53. This Pbx1 domain, which lies upstream of the homeodomain and is highly conserved among Pbx proteins, is thus predicted to bind a specific transcription factor. Surprisingly, the repression activity of Pbx1 did not require homeodomain-dependent DNA binding. Thus, Pbx1 may be able to alter gene transcription by both DNA-binding-dependent and DNA-binding-independent mechanisms.
Resumo:
Acquired interstitial loss of all or part of the long arm of human chromosome 5 (5q-) is an anomaly that is seen frequently in patients with preleukemic myelodysplasia and acute myelogenous leukemia. Loss of a critical region of overlap at band 5q31.1 in all of these cases, with various cytogenetic breaks, signifies the existence of a key negative regulator of leukemogenesis. Previous studies have defined the proximal and distal ends of the critical region to reside between the genes for IL9 and EGR1, respectively. In this report, we describe a yeast artificial chromosome contig spanning this myeloid tumor suppressor locus. The combined order of the polymorphic loci is centromere-IL9-(D5S525-D5S558-D5S89-D5S526 -D5S393)-D5S399-D5S396-D5S414-EGR1 and telomere. The physical distance between the IL9 and EGR1 genes is estimated to be < 2.4 Mb. Here we report the utility of these polymorphic loci by detecting a submicroscopic deletion of 5q31; an acute myelogenous leukemia patient with a three-way translocation, t(5;18;17)(q31;p11;q11), as the sole anomaly revealed allele loss of the D5S399 and D5S396 loci.
Resumo:
The cause for childhood acute lymphoblastic leukemia (ALL) remains unknown, but male gender is a risk factor, and among ethnicities, Hispanics have the highest risk. In this dissertation, we explored correlations among genetic polymorphisms, birth characteristics, and the risk of childhood ALL in a multi-ethnic sample in 161 cases and 231 controls recruited contemporaneously (2007-2012) in Houston, TX. We first examined three lymphoma risk markers, since lymphoma and ALL both stem from lymphoid cells. Of these, rs2395185 showed a risk association in non-Hispanic White males (OR=2.8, P=0.02; P interaction=0.03 for gender), but not in Hispanics. We verified previously known risk associations to validate the case-control sample. Mutations of HFE (C282Y, H63D) were genotyped to test whether iron-regulatory gene (IRG) variants known to elevate iron levels increase childhood ALL risk. Being positive for either polymorphism yielded only a modestly elevated OR in males, which increased to 2.96 (P=0.01) in the presence of a particular transferrin receptor (TFRC) genotype for rs3817672 (Pinteraction=0.04). SNP rs3817672 itself showed an ethnicity-specific association (P interaction=0.02 for ethnicity). We then examined additional IRG SNPs (rs422982, rs855791, rs733655), which showed risk associations in males (ORs=1.52 to 2.60). A polygenic model based on the number of polymorphic alleles in five IRG SNPs revealed a linear increase in risk (OR=2.00 per incremental change; P=0.002). Having three or more alleles compared with none was associated with increased risk in males (OR=4.12; P=0.004). Significant risk associations with childhood ALL was found with birth length (OR=1.18 per inch, P=0.04), high birth weight (>4,000g) (OR=1.93, P=0.01), and with gestational age (OR=1.10 per week, P=0.04). We observed a negative correlation between HFE SNP rs9366637 and gestational age (P=0.005), again, stronger in males ( P=0.001) and interacting with TFRC (P interaction=0.05). Our results showed that (i) ALL risk markers do not show universal associations across ethnicities or between genders, (ii) IRG SNPs modify ALL risk presumably by their effects on iron levels, (iii) a negative correlation between an HFE SNP and gestational age exists, which implicates an iron-related mechanism. The results suggest that currently unregulated supplemental iron intake may have implications on childhood ALL development.
Resumo:
Males and age group 1 to 5 years show a much higher risk for childhood acute lymphoblastic leukemia (ALL). We performed a case-only genome-wide association study (GWAS), using the Illumina Infinium HumanCoreExome Chip, to unmask gender- and age-specific risk variants in 240 non-Hispanic white children with ALL recruited at Texas Children’s Cancer Center, Houston, Texas. Besides statistically most significant results, we also considered results that yielded the highest effect sizes. Existing experimental data and bioinformatic predictions were used to complement results, and to examine the biological significance of statistical results. Our study identified novel risk variants for childhood ALL. The SNP, rs4813720 (RASSF2), showed the statistically most significant gender-specific associations (P < 2 x 10-6). Likewise, rs10505918 (SOX5) yielded the lowest P value (P < 1 x 10-5) for age-specific associations, and also showed the statistically most significant association with age-at-onset (P < 1 x 10-4). Two SNPs, rs12722042 and 12722039, from the HLA-DQA1 region yielded the highest effect sizes (odds ratio (OR) = 15.7; P = 0.002) for gender-specific results, and the SNP, rs17109582 (OR = 12.5; P = 0.006), showed the highest effect size for age-specific results. Sex chromosome variants did not appear to be involved in gender-specific associations. The HLA-DQA1 SNPs belong to DQA1*01:07and confirmed previously reported male-specific association with DQA1*01:07. Twenty one of the SNPs identified as risk markers for gender- or age-specific associations were located in the transcription factor binding sites and 56 SNPs were non-synonymous variants, likely to alter protein function. Although bioinformatic analysis did not implicate a particular mechanism for gender- and age-specific associations, RASSF2 has an estrogen receptor-alpha binding site in its promoter. The unknown mechanisms may be due to lack of interest in gender- and age-specificity in associations. These results provide a foundation for further studies to examine the gender- and age-differential in childhood ALL risk. Following replication and mechanistic studies, risk factors for one gender or age group may have a potential to be used as biomarkers for targeted intervention for prevention and maybe also for treatment.
Resumo:
Les leucémies aigues sont la conséquence d’une prolifération clonale et maligne des cellules hématopoïétiques. Elles surviennent suite à un évènement oncogénique qui se produit dans une cellule souche hématopoïétique (CSH) ou progénitrice. Cela lui confère une certaine instabilité qui engendre l’accumulation d’autres évènements génétiques et/ou épigénétiques responsables du développement clinique de la maladie. Les leucémies MLL représentent environ 10% des leucémies aigues et aujourd’hui, plus de 70 gènes de fusion ont été caractérisés. Les sangs de cordon sont une source importante de CSH et progénitrices. La purification de ces cellules et leur transformation en cellules leucémiques à l’aide de gènes de fusion MLL nous permettent de générer des leucémies aigues humaines dans des souris immunodéficientes NSG et ainsi étudier le potentiel leucémique de différents gènes de fusion MLL. Dans un premier temps, 4 gènes de fusion MLL ont été étudiés : MLL-AF9, MLL-AF4, MLL-ENL et MLL-ELL. In vitro, nous sommes capables de transformer des CSH en cellules leucémiques capables de proliférer rapidement. Les résultats in vivo nous montrent qu’il est possible de générer des leucémies avec les oncogènes MLL-AF9 et MLL-ENL. Pour les fusions MLL-ELL et MLL-AF4, bien que quelques leucémies ont pu être obtenues, plusieurs problèmes techniques nous empêchent aujourd’hui de disposer d’un modèle adéquat permettant l’étude complète de ces oncogènes. Dans un second temps, les leucémies aigues MLL-AF9 ont été étudiées dans un modèle contrôlé où les cellules souches proviennent d’un donneur unique. Grâce à ce modèle, nous avons pu démontrer que l’oncogène MLL-AF9 est suffisant pour induire le développement de la maladie. En effet aucune nouvelle mutation n’a pu être identifiée au cours du développement de la leucémie. Parmi les leucémies myéloïdes aigues (LMA) MLL-AF9 issues de ce modèle, certains gènes non mutés, dont RET, ont été identifiés comme étant de potentiels biomarqueurs de ce sous-groupe de leucémie.
Resumo:
Males and age group 1 to 5 years show a much higher risk for childhood acute lymphoblastic leukemia (ALL). We performed a case-only genome-wide association study (GWAS), using the Illumina Infinium HumanCoreExome Chip, to unmask gender- and age-specific risk variants in 240 non-Hispanic white children with ALL recruited at Texas Children’s Cancer Center, Houston, Texas. Besides statistically most significant results, we also considered results that yielded the highest effect sizes. Existing experimental data and bioinformatic predictions were used to complement results, and to examine the biological significance of statistical results. ^ Our study identified novel risk variants for childhood ALL. The SNP, rs4813720 (RASSF2), showed the statistically most significant gender-specific associations (P < 2 x 10-6). Likewise, rs10505918 (SOX5) yielded the lowest P value (P < 1 x 10-5 ) for age-specific associations, and also showed the statistically most significant association with age-at-onset (P < 1 x 10-4). Two SNPs, rs12722042 and 12722039, from the HLA-DQA1 region yielded the highest effect sizes (odds ratio (OR) = 15.7; P = 0.002) for gender-specific results, and the SNP, rs17109582 (OR = 12.5; P = 0.006), showed the highest effect size for age-specific results. Sex chromosome variants did not appear to be involved in gender-specific associations. ^ The HLA-DQA1 SNPs belong to DQA1*01:07and confirmed previously reported male-specific association with DQA1*01:07. Twenty one of the SNPs identified as risk markers for gender- or age-specific associations were located in the transcription factor binding sites and 56 SNPs were non-synonymous variants, likely to alter protein function. Although bioinformatic analysis did not implicate a particular mechanism for gender- and age-specific associations, RASSF2 has an estrogen receptor-alpha binding site in its promoter. The unknown mechanisms may be due to lack of interest in gender- and age-specificity in associations. These results provide a foundation for further studies to examine the gender- and age-differential in childhood ALL risk. Following replication and mechanistic studies, risk factors for one gender or age group may have a potential to be used as biomarkers for targeted intervention for prevention and maybe also for treatment.^