905 resultados para Acidic
Resumo:
A new type of inorganic-organic hybrid material incorporating carbon powder and alpha -type 2:18-molybdodiphosphate (P2Mo18) in a methyltrimethoxysilane (MTMOS) based gel has been produced by a sol-gel process and used to fabricate a chemically modified electrode. The P2Mo18-doped carbon ceramic composite electrode was characterized using SEM and cyclic voltammetry. Square-wave voltammetry with an excellent sensitivity was exploited to conveniently investigate the dependence of current and half-wave potential (E-1/2) on pH. The chemically modified electrode has some advantages over the modified film electrodes constructed by the conventional methods, such as long-term stability, reproducibility, and especially repeatability of surface-renewal by simple polishing in the event of surface fouling or dopant leaching. In addition, the modified electrode shows a good catalytic activity for the electrochemical reduction of bromate in an acidic aqueous solution. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A series of strong solid acids composed of WO3/ZrO2 were prepared. Their crystal structure, surface state, and acidity were determined by the methods of X-ray diffraction, thermal gravimetric and differential thermal analysis, temperature-programmed reduction, laser Raman, and acidity measurement. The results revealed that ZrO2 in WO3/ZrO2 existed mainly in the tetragonal phase, the addition of WO3 plays an important role in stabilizing the tetragonal phase of ZrO2, and all of the samples possessed large surface areas. WO3 in WO3/ZrO2 is mainly monolayer dispersed, and a small amount crystallized on the ZrO2 surface and partly reacted with ZrO2 to form the bond of Zr-O-W, acting as the strong solid acid center. The catalytic properties of WO3/ZrO2 strong solid;acids for alkylation of isobutane with butene at different conditions were investigated. They had a better reaction performance than other strong solid acids; a parallel relationship could be drawn between the catalytic activity and the acid amounts as well as the acidic strength of the catalysts.
Resumo:
Diaminoalkanes (NH2(CH2)(n)NH2, n = 7,10,12) were grafted onto a glassy carbon electrode (GCE) surface by amino cation radical formed during electrooxidation of amino group. The presence of diamine grafted layer at the GCE is demonstrated by X-ray photoelectron spectroscopy. The effect of the grafted layer at the GCE surface on the redox responses of Ru(NH3)(6)(3+) and Fe(CN)(6)(3-) redox probes has been investigated. Electrochemical impedance experiments indicate that the kinetics of electron transfer are slowed down when the scan rate taken to modify the GCE is low, and that diaminoalkane with longer alkyl-chain used has higher blocking characteristics. The amine-functionalized GCE is versatile not only to further covalently immobilize ferrocene acetic acid via carbodiimide coupling, but also as a charge-rich substrate to successfully adsorb heteropolyanion P2W18 in acidic solution by electrostatic interaction. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
The preparation, structure, and electrochemical and electrocatalytical properties of a new polyoxometalate-based organic/inorganic film, composed of cetyl pyridinum 11-molybdovanadoarsenate (CPMVA) molecules, have been studied. Cyclic potential scanning in acetone solution led to a stable CPMVA film formed on a highly oriented pyrolytic graphite (HOPG) surface. X-ray photoelectron spectroscopy, scanning tunneling microscopy, and cyclic voltammetry were used for characterizing the structure and properties of the CPMVA film. These studies indicated that self-aggregated clusters were formed on a freshly cleaved HOPG surface, while a self-organized monolayer was formed on the precathodized HOPG electrode. The CPMVA film exhibited reversible redox kinetics both in acidic aqueous and in acetone solution, which showed that it could be used as a catalyst even in organic phase. The CPMVA film remained stable even at pH > 7.0, and the pH dependence of the film was much smaller than that of its inorganic film (H4AsMo11VO40) in aqueous solution. The CPMVA film showed strong electrocatalysis on the reduction of bromate, and the catalytic currents were proportional to the square of the concentration of bromate. The new kind of polyoxometalate with good stability may have extensive promise in catalysis.
Resumo:
A new kind of inorganic self-assembled monolayer (SAM) was prepared by spontaneous adsorption of polyoxometalate anion, AsMo11VO404-, onto a gold surface from acidic aqueous solution. The adsorption process, structure, and electrochemical properties of the AsMo11VO404- SAM were investigated by quartz crystal microbalance (QCM), electrochemistry, and scanning tunneling microscopy (STM). The QCM data suggested that the self-assembling process could be described in terms of the Langmuir adsorption model, providing the value of the free energy of adsorption at -20 KJ mol(-1). The maximum surface coverage of the AsMo11VO404- SAM on gold surface was determined from the QCM data to be 1.7 x 10(-10) mol cm(-2), corresponding to a close-packed monolayer of AsMo11VO404- anion. The analysis of the voltammograms of the AsMo11VO404- SAM on gold electrode showed three pairs of reversible peaks with an equal surface coverage of 1.78 x 10(-10) mol cm(-2) for each of the peaks, and the value was agreed well with the QCM data. In-situ STM image demonstrated that the AsMo11VO404- SAM was very uniform and no aggregates or multilayer could be observed. Furthermore, the high-resolution STM images revealed that the AsMo11VO404- SAM on Au(lll) surface was composed of square unit cells with a lattice space of 10-11 Angstrom at +0.7 V (vs Ag\AgCl). The value was quite close to the diameter of AsMo11VO404- anion obtained from X-ray crystallographic study. The surface coverage of the AsMo11VO404- SAM on gold electrode estimated from the STM image was around 1.8 x 10(-10) mol cm(-2), which was consistent with the QCM and electrochemical results.
Resumo:
A series of WO3/ZrO2 strong solid acid prepared under different conditions were studied. Their crystal structures, surface properties and acidities were determined by means of XRD, DTA-TG, H-2- TPR, Laser Raman and acidity measurements. The results revealed that ZrO2 in WO3/ZrO2 existed mainly in tetragonal phase, the addition of WO3 plays an important role to stabilize tetragonal phase of ZrO2 and thus the catalyst had a considerable surface area. WO3 in WO3/ZrO2 was dispersed and crystalized in WO3 crystalite on ZrO2 surface and partly reacted with ZrO2 to form the bond of Zr-O-W, which acts as the strong solid acid site. The catalytic properties of WO3/ZrO2 strong solid acid for alkylation of iso-butane with butene under the different conditions were investigated. They had a better reaction performance than other strong solid acids, a parallel relationship could be drawn between the catalytic activity and the amount of acid sites as well as the acidic strength of the catalysts.
Resumo:
Polyaniline nanoparticles were prepared on a highly oriented pyrolytic graphite (HOPG) surface from dilute polyaniline acidic solution (1 mM aniline + 1 M HClO4) using a pulsed potentiostatic method. Electrochemistry, Fourier transform infrared external reflection spectroscopy (FT-IR-ERS), X-ray photoelectron spectroscopy (XPS) and tapping-mode atomic force microscopy (TMAFM) were: used to characterize the composition and structure of the polyaniline nanoparticles. FT-IR-ERS and XPS results revealed that the polyaniline was in its emeraldine form. TMAFM measurement showed that the electropolymerized polyaniline nanoparticles dispersed on the:HOPG surface with a coverage of about 10(10) cm(-2). These nanoparticles were disk-shaped having a height of 10(-30) Angstrom and an apparent diameter varying from 200 to 600 Angstrom. The particle dimensions increased with the electropolymerization charge (Q) over the interval from 5.7 to 19.3 mu C cm(-2) (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
9,10-Phenanthrenequinone (PQ) supported on graphite powder by adsorption was dispersed in propyltrimethoxysilane-derived gels to yield a conductive composite which was used as electrode material to fabricate a PQ-modified carbon ceramic electrode. In this configuration, PQ acts as a catalyst, graphite powder guarantees conductivity by percolation, the silicate provides a rigid porous backbone, and the propyl groups endow hydrophobicity and thus limit the wetting region of the modified electrode. Square-wave voltammetry was exploited to investigate the pH-dependent electrochemical behavior of the composite electrode and an almost Nernstian response was obtained from pH 0.42 to 6.84. Because the chemically modified electrode can electrocatalyze the reduction of iodate in acidic aqueous solution (pH 2.45), it was used as an amperometric sensor for the determination of iodate in table salt. The advantages of the electrode are that it can be polished in the event of surface fouling, it is simple to prepare, has excellent chemical and mechanical stability, and the reproducibility of surface-renewal is good.
Resumo:
In an acidic aqueous solution of acetonitrile, the catalytic activity of the catalysts consisted of Pd(OAc)(2)/hydroquinone(HQ) with iron phthalocyanine (FePc) from various sources was obviously different in the oxidation of cyclohexene to cyclohexanone, The analysis of the FePc using IR spectroscopy, Mossbauer spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), scanning electron microscopy(SEM) and BET surface area measurement indicated that the catalytic activity of the multicomponent catalytic system composed of iron phthalocyanines depends on the amount of mu -oxo FePc, the crystallinity and the surface structure of iron phthalocyanine.
Resumo:
Three kinds of TiO2 nanostructured thin films and their CdS-sensitized films, consisting of different sizes of TiO2 nanoparticles prepared with different methods, have been investigated. The surface photovoltage spectra (SPS) measurements indicate that the density of surface states on TiO2 is likely dependent upon the details of prepared methods. TiO2 particles prepared from basic sol have more surface states than that prepared from acidic sol. When the TiO2 thin films prepared using the TiO2 sols were sensitized by CdS particles, the SPS responses relative to the surface states on TiO2 from 350 to 800 nm were decreased. The photoelectrochemical properties of nanostructured TiO2 electrodes suggest that the fewer the surface states and the smaller the particle sizes of TiO2, the larger the photocurrent response. For CdS sensitized TiO2 thin film electrode, it is shown that the semiconductor sensitization is an efficient way to decrease the influence of surface states on the charge separation, and can improve the intensity of photocurrent response. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A novel inorganic-organic hybrid material incorporating graphite powder and Keggin-type alpha -germanomolybdic acid (GeMo12) in methyltrimethoxysilane-based gels has been produced by the sol-gel technique and used to fabricate a chemically bulk-modified electrode. GeMo12 acts as a catalyst, graphite powder ensures conductivity by percolation, the silicate provides a rigid porous backbone, and the methyl groups endow hydrophobicity and thus limit the wetting section of the modified electrode. The GeMo12-modified graphite organosilicate composite electrode was characterized by cyclic and square-wave voltammetry. The modified electrode shows a high electrocatalytic activity toward the reduction of bromate, nitrite and hydrogen peroxide in acidic aqueous solution. In addition, the chemically-modified electrode has some distinct advantages over the traditional polyoxometalate-modified electrodes, such as long-term stability and especially repeatability of surface-renewal by simple mechanical polishing.
Resumo:
The cleavage of adenosine-5'-monophosphate (5'-AMP) and guanosine-5'-monophosphate (S-GMP) by Ce4+ and lanthanide complex of 2-carboxyethylgermanium sesquioxide (Ge-132) in acidic and near neutral conditions was investigated by NMR, HPLC and measuring the liberated inorganic phosphate at 37 degrees C and 50 degrees C, The results showed that 5'-GMP and 5'-AMP was converted to guanine (G), 5'-monophosphate (depurination of 5'-GMP), ribose (depurination and dephosphorylation of 5'-GMP), phosphate and adenine (A), 5'-monophosphate (depurination of 5'-AMP), ribose (depurination and dephosphorylation of 5'-AMP), phosphate respectively by Ce4+. In presence of lanthanide complexes, 5'-GMP and 5'-AMP were converted to guanosine (Guo) and phosphate and adenosine (Ado) and phosphate respectively. The mechanism of cleaving 5'-GMP and 5'-AMP is hydrolytic scission.
Resumo:
Polyaniline is prepared by chemical polymerization of aniline in an acidic solution using H2O2 as an oxidant and ferrous chloride as a catalyst. A wide variety of synthesis parameters are studied, such as the amount of the catalyst, reaction temperature, reaction time, initial molar ratio of oxidant, monomer and catalyst, and aniline and HCl concentrations. The polymerization of aniline can be initiated by a very small amount of catalyst. The yield and the conductivity of product depend on the initial molar ratio of the oxidant and monomer. The polyaniline with a conductivity of about 10 degrees S/cm and a yield of 60% is prepared under optimum conditions. The process of polymerization was studied by in situ ultraviolet-visible spectroscopy and open-circuit potential technology. Compared to the polymerization process in a (NH4)(2)S2O8 system, the features of the H2O2-Fe2+ system are pointed out, and the chain growth mechanism is proposed. (C) 1999 John Wiley & Sons, Inc.
Resumo:
The cleavage and formation of the di sulfide bond of 2,5-dimercapto-1,3,4-thiadiazole (DMcT) were examined in an aqueous solution of pH value from 0 to 14 with and without polyaniline (PAn), The redox reaction of DMcT was accelerated by PAn in acidic condition. The cell using this anodic material was set-up and characterized in aqueous electrolyte.
Resumo:
In this paper, a series of Sr1-xLaxNiAl11O19 catalysts were synthesized and their chemical and physical properties were investigated by XRD, UV-DRS, H-2-O-2 titration, TPR and Py-IR techniques. The experimental results show that the Sr1-xLaxNiAl11O19 catalysts have a magnetoplumbite structure and Ni ion is shared between tetrahedral and octahedral sites of the spinel blocks, and the amount of nickel ions in the tetrahedral environment increases with the increase of x value in Sr1-xLaxNiAl11O19. The TPR study revealed that the reducibility of the series of the catalysts depends strongly on the substitution value x, that is, a low temperature peak appears for samples without substitution, in case of samples with x = 1 high temperature peak appears, and for samples with 0