998 resultados para Accumulation rate, sand > 63 µm
Resumo:
Accumulation rate of dissolved organic matter (DOM) by natural populations varies over a wide range. In the surface layer of the Black Sea accumulation rate of glucose is 0.6-4.82 mg C/m**3 per day, and in the Atlantic Ocean 1.15-12.38 mg C/m**3 per day. This rate is 2-17 times higher when hydrolysate is added to the medium. Accumulation rate of glucose and hydrolysate in the aphotic layer of the Black Sea and the Atlantic Ocean is 1.5-6 times lower than at the surface. The organotrophic coefficient also varied within wide range. Relative amount of DOM used by microorganisms for growth in total production is much less (0.6-39.9%) in areas of intensive photosynthesis than in waters poor in DOM (83.7-99.2%).
Resumo:
Eocene through Pliocene benthic foraminifers were examined from seven sites located at middle and lower bathyal depths on the Lord Howe Rise in the Tasman Sea, from another site at lower bathyal depths in the Coral Sea, and from a site in the intermediate-depth, hemipelagic province of the Chatham Rise, east of southern New Zealand. Age-related, depth-related, and bioprovincial faunal variations are documented in this chapter. One new species, Rectuvigerina tasmana, is named. The paleoecologic indications of several key groups, including the miliolids, uvigerinids, nuttallitids, and cibicidids, are combined with sedimentologic and stable isotopic tracers to interpret paleoceanographic changes in the Tasman Sea. Because the total stratigraphic ranges of many bathyal benthic foraminifers are not yet known, most endpoints in the Tasman Sea are considered ecologically controlled events. The disappearances of Uvigerina rippensis and Cibicidoidesparki and the first appearances of U. pigmaea, Sphaeroidina bulloides, and Rotaliatina sulcigera at the Eocene/Oligocene boundary can be considered evolutionary events, as also can the first appearance of Cibicides wuellerstorfi in Zone NN5. Species which are restricted to the lower bathyal zone except during discrete pulses, most of which are related to the development of glacial conditions, include Melonis pompilioides, M. sphaeroides, Pullenia quinqueloba, Nuttallides umbonifera, and U. hispido-costata. Middle bathyal indigenes include U. spinulosa, U. gemmaeformis, Ehrenbergina marwicki, R. sulcigera, and all rectuvigerinids except Rectuvigerina spinea. Although the miliolids first occurred at lower bathyal depths, they were more common in the middle bathyal zone. Although the Neogene hispido-costate uvigerinids first developed at lower bathyal depths and at higher middle latitude sites, in the later Neogene this group migrated to shallower depths and became predominant also in the middle bathyal zone. Despite the relatively similar sedimentologic settings at the six middle bathyal Tasman sites, there was extensive intrageneric and intraspecific geographic variation. Mililiolids, strongly ornamented brizalinids, bolivinitids, Bulimina aculeata, Osangularia culter, and strongly porous morphotypes were more common at higher latitudes. Osangularia bengalensis, striate brizalinids such as Brizalina subaenariensis, Gaudryina solida, osangularids in general, and finely porous morphotypes were more common in the subtropics. There was strong covariance between faunas at lower middle latitude, lower bathyal Site 591, and higher middle latitude, middle bathyal Site 593. The following oceanographic history of the Tasman Sea is proposed; using the stable isotopic record as evidence for glacials and examining the ecologic correlations between (1) miliolids and carbonate saturation, (2) nuttallitids and undersaturated, cooled, or "new" water masses, (3) uvigerinids with high organic carbon in the sediment and high rates of sediment accumulation, and (4) cibicidids and terrestrial organic carbon. The glacial located near the Eocene/Oligocene boundary is characterized by the penetration of cooler, more corrosive waters at intermediate depths in high southern latitudes. This may have caused overturn, upwelling pulses, in other Tasman areas. The development of Neogenelike conditions began in the late Oligocene (Zone NP24/NP25) with the evolution of several common Neogene species. A large number of Paleogene benthics disappeared gradually through the course of the early Miocene, which was not well preserved at any Tasman site. Corrosive conditions shallowed into the middle bathyal zone in several pulses during the early Miocene. The development of glacial conditions in the middle Miocene was accompanied by major changes throughout the Tasman Sea. Sediment accumulation rates increased and high-productivity faunas and corrosive conditions developed at all but the lowest-latitude Site 588. This increase in productivity and accumulation rate is attributed to the eutrophication of Antarctic water masses feeding Tasman current systems, as well as to invigorated circulation in general. It overlaps with the beginning of the Pacific High-productivity Episode (10-5 Ma). During the latest Miocene glacial episode, corrosive conditions developed at lower bathyal depths, while cooler water and lower nutrient levels shallowed to middle bathyal depths. Lower input of terrestrial organic carbon may be related to the lower nutrient levels of this time and to the termination of the Pacific High-productivity Episode. The moderate glacial episode during the mid-Pliocene (Zone NN15/NN16, ~3.2 Ma) corresponds to a decline in sediment accumulation rates and a reorganization of faunas unlike that of all other times. New genera proliferate and indices for cool, noncorrosive conditions and high organic carbon expand throughout the middle bathyal zone coeval with the sedimentation rate decreases. By the latest Pliocene (about 2.5 Ma), however, during another glacial episode, faunal patterns typical of this and later glacials develop throughout the Tasman Sea. Benthic foraminiferal patterns suggest increased input of terrestrial organic matter to Tasman Sea sediments during this episode and during later glacials.
Resumo:
CaCO3, Corg, and biogenic SiO2 were measured in Eocene equatorial Pacific sediments from Sites 1218 and 1219, and bulk oxygen and carbon isotopes were measured on selected intervals from Site 1219. These data delineate a series of CaCO3 events that first appeared at ~48 Ma and continued to the Eocene/Oligocene boundary. Each event lasted 1-2 m.y. and is separated from the next by a low CaCO3 interval of a similar time span. The largest of these carbonate accumulation events (CAE-3) is in Magnetochron 18. It began at ~42.2 Ma, lasted until ~40.3 Ma, and was marked by higher than average productivity. The end of CAE-3 was abrupt and was associated with a large-scale carbon transfer to the oceans prior to warming of high-latitude regions. Changes in carbonate compensation depth associated with CAE excursions were small in the early part of the middle Eocene but increased to as much as 800 m by the late middle Eocene before decreasing into the late Eocene. Oxygen isotope data indicate that the carbonate events are associated with cooling conditions and may mark small glaciations in the Eocene.
Resumo:
Variations in primary productivity (PP) have been reconstructed in eutrophic, mesotrophic and oligotrophic parts of the Arabian Sea over the past 135 000 years applying principal component analysis and transfer function to planktic foraminiferal assemblages. Temporal variation in paleoproductivity is most pronounced in the mesotrophic northern (NAST site) and oligotrophic eastern (EAST site) Arabian Sea, and comparatively weak in the western eutrophic GeoB 3011-1 site in the upwelling area off Oman. Higher PP during interglacials (250-320 g C/m**2 year) than during cold stages (210-270 g C/m**2 year) at GeoB 3011-1 could have been caused by a strengthened upwelling during intensified summer monsoons and increased wind velocities. At NAST, during interglacials, PP is estimated to exceed g C/m**2 year 1, and during glacials to be as low as 140-180 g C/m**2 year. These fluctuations may result from a (1) varying impact of filaments that are associated to the Oman coastal upwelling, and (2) from open-ocean upwelling associated to the Findlater Jet. At EAST, highest productivity of about 380 g C/m**2 year is documented for the transition from isotope stage 5 to 4. We suggest that during isotope stages 2, 4, 5.2, the transition 5/4, and the end of stage 6, deep mixing of surface waters was caused by moderate to strong winter monsoons, and induced an injection of nutrients into the euphotic layer leading to enhanced primary production. The deepening of the mixed layer during these intervals is confirmed by an increased concentration of deep-dwelling planktic foraminiferal species. A high-productivity event in stage 3, displayed by estimated PP values, and by planktic foraminifera and radiolaria flux and accumulation rate, likely resulted from a combination of intensified SW monsoons with moderate to strong NE monsoons. Differential response of Globigerina bulloides, Globigerinita glutinata and mixed layer species to the availability of food is suited to subdivide productivity regimes on a temporal and spatial scale.
Resumo:
A 328 cm-long piston core (KODOS 02-01-02) collected from the northeast equatorial Pacific at 16°12'N, 125°59'W was investigated for eolian mass fluxes and grain sizes to test these proxies as a tool for the paleo-position of the Intertropical Convergence Zone (ITCZ). The eolian mass fluxes of the lower interval below 250 cm (15.5-7.6 Ma) are very uniform at 5 +/- 1 mg/cm**2/kyr, while those of the upper interval above 250 cm (from 7.6 Ma) are over 2 times higher than the lower interval at 12 +/- 1 mg/cm**2/kyr. The median grain size of the eolian dusts in the lower interval increases from 8.4 Phi to 8.0 Phi downward, while that of the upper interval varies in a narrow range from 8.8 Phi to 8.6 Phi. The determined values compare well in magnitude to those of central Pacific sediments for the upper interval and equatorial and southeast Pacific sediments for the lower interval. This result suggests a possibility that the study site had been under the influence of southeast trade winds at its earlier depositional period due to the northerly position of the ITCZ, and subsequently of the northeast trade winds for a later period when the upper sediments were deposited. This interpretation is consistent with a mineralogical and geochemical study published elsewhere that assigned the provenance of the study core dust to Central/South America for the lower interval and to Asia for the upper interval. This study suggests that the distinct differences in eolian mass flux and grain size observed across the ITCZ can be used to trace the paleo-latitude of the ITCZ.
Resumo:
We investigated five time-equivalent core sections (180-110 kyr BP) from the Balearic Sea (Menorca Rise), the easternmost Levantine Basin and southwest, south, and southeast of Crete to reconstruct spatial patterns of productivity during deposition of sapropels S5 and S6 in the Mediterranean Sea. Our indicators are Ba, total organic carbon and carbonate contents. We found no indications of Ba remobilization within the investigated core intervals, and used the accumulation rate of biogenic Ba to compute paleoproductivity. Maximum surface water productivity (up to 350 g C/m2/yr) was found during deposition of S5 (isotope stage 5e) but pronounced spatial variability is evident. Coeval sediment intervals in the Balearic Sea show very little productivity change, suggesting that chemical and biological environments in the eastern and western Mediterranean basins were decoupled in this interval. We interpret the spatial variability as the result of two different modes of nutrient delivery to the photic zone: riverderived nutrient input and shoaling of the pycnocline/nutricline to the photic zone. The productivity increase during the formation of S6 was moderate compared to S5 and had a less marked spatial variability within the study area of the eastern Mediterranean Sea. Given that S6 formed during a glacial interval, glacial boundary conditions such as high wind stress and/or cooler surface water temperatures apparently favored lateral and vertical mixing and prevented the development of the spatial gradients within the Eastern Mediterranean Sea (EMS) observed for S5. A non-sapropel sediment interval with elevated Ba content and depleted 18O/16O ratios in planktonic foraminifer calcite was detected between S6 and S5 that corresponds to the weak northern hemisphere insolation maximum at 150 kyr. At this time, productivity apparently increased up to five times over surrounding intervals, but abundant benthic fauna show that the deep water remained oxic. Following our interpretation, the interval denotes a failed sapropel, when a weaker monsoon did not force the EMS into permanent stratification. The comparison of interglacial and glacial sapropels illustrates the relevance of climatic boundary conditions in the northern catchment in determining the facies and spatial variability of sapropels within the EMS.
Resumo:
Stable isotope records of coexisting benthic foraminifers Uvigerina spp. and Cibicidoides spp. and planktonic G. ruber (white variety) from Site 724 are used to study the late Pleistocene evolution of surface and intermediate water hydrography (593 m water depth) at the Oman Margin. Glacial-interglacial d18O amplitudes recorded by the benthic foraminifers are reduced when compared to the estimated mean ocean changes of d18Oseawater . Epibenthic d13C remains at its modern level or is increased during glacial times. This implies that Red Sea outflow waters which are enriched in d18Oseawater and d13C (Sum CO2) have been replaced during glacial periods by intermediate waters still positive in d13C (Sum CO2) but more negative in d18Oseawater. Glacial-interglacial amplitudes of the planktonic d18O record exceed those of the mean ocean d18Oseawater variation and imply decreased surface water temperatures (SST) during glacial times. Throughout most of the records these cooling events correlate with enhanced rates of carbon accumulation. However, both negative (colder) SST and positive Corg accumulation rate anomalies do not correlate with potential physical upwelling maxima as inferred from the orbital monsoon index. This is in conflict with the established hypothesis that upwelling in the estern Arabia Sea should be strongest during maxima of the southwest monsoon.
Resumo:
Sediment drifts on the continental rise west of the Antarctic Peninsula received fine-grained sediment and ice-rafted debris (IRD) directly from the continental shelf and thus indirectly record the history of West Antarctic glaciation. Site 1101 contains a 218-m-thick, nearly continuous section extending from the late Pliocene to the Holocene. To assess the presence of calving glaciers at sea level in the Antarctic Peninsula region, the mass accumulation rate (MAR) of IRD was calculated using the weight percent terrigenous sand fraction (250 µm to 2 mm). IRD MAR is cyclic throughout, with small peaks alternating with periods of low or no IRD. Many cycles have a sawtooth pattern that increases gradually to the peak then abruptly decreases to zero. This pattern is consistent with rapid disintegration of ice streams and release of icebergs from the continental shelf. Three unusually large peaks (three to five times the size of other peaks) occurred at approximately 2.8, 1.9, and 0.88 Ma and indicate periods of intense ice rafting. Lithofacies were described in detail using X-radiographs and core descriptions for the interval from 1.34 to 0.54 Ma. Glacial units are represented by thickly laminated mud deposited by distal turbidites and meltwater plumes. Less commonly, thinly laminated sediment formed by contour currents and diamicton by intense ice rafting. Interglacials are represented by foraminifer-bearing mud with IRD. Ice rafting appears to have increased in the later part of the glacial period and remained high in the interglacial period.