997 resultados para Accumulation rate, benthic foraminiferal mass


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small biserial foraminifera were abundant in the early Miocene (ca. 18.9-17.2 Ma) in the eastern Atlantic and western Indian Oceans, but absent in the western equatorial Atlantic Ocean, Weddell Sea, eastern Indian Ocean, and equatorial Pacific Ocean. They have been assigned to the benthic genus Bolivina, but their high abundances in sediments without evidence for dysoxia could not be explained. Apertural morphology, accumulation rates, and isotopic composition show that they were planktic (genus Streptochilus). Living Streptochilus are common in productive waters with intermittent upwelling. The widespread early Miocene high Streptochilus abundances may reflect vigorous but intermittent upwelling, inducing high phytoplankton growth rates. However, export production (estimated from benthic foraminiferal accumulation rates) was low, possibly due to high regeneration rates in a deep thermocline. The upwelled waters may have been an analog to Subantarctic Mode Waters, carrying nutrients into the eastern Atlantic and western Indian Oceans as the result of the initiation of a deep-reaching Antarctic Circumpolar Current, active Agulhas Leakage, and vigorous vertical mixing in the Southern Oceans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The amount and the accumulation rate of quartz were measured in 33 samples from Hole 576A. The amount and source of mineral aerosol being deposited in the northwest Pacific during the Cenozoic are evaluated using these data. When Hole 576A is compared to a Cenozoic record in the central North Pacific, a strong uniformity in the composition of the mineral aerosol across the North Pacific is seen. The data suggest that Hole 576A entered the influence of the westerlies about 15 m.y. ago and that since that time the rates of sediment deposition have increased. Only the dramatic change in quartz accumulation 2.5 m.y. ago can be clearly related to a climatic event, but a gradual increase in quartz accumulation through the Miocene and early Pliocene is probably a result of increasing Northern Hemisphere aridity and intensified atmospheric activity associated with global cooling during the interval.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mass-accumulation rate (MAR) of the non-authigenic, inorganic, crystalline component of deep-sea sediments from the Pacific aseismic rises apparently reflects influx of eolian sediment. The eolian sediment usually is dominated by volcanic material, except during glacial times. Sediments from Hess Rise provide a discontinuous record of eolian MARs. During Albian to Cenomanian time, the influx of volcanic material was fairly high (0.35-0.6 g/cm**2/10**3 yr), recording the latest stages of the Albian volcanism that formed Hess Rise. From the Campanian through the Paleocene, influx of eolian sediment was low, averaging 0.03 g/cm**2/10**3 yr. None of the four Hess Rise drill sites show evidence of the Late Cretaceous volcanic episode recorded at many sites now in the equatorial to subtropical Pacific. Pliocene to Pleistocene samples record a peak in volcanic influx about 4 to 5 m.y. ago, which has been well documented elsewhere. The several-fold increase in eolian accumulation rates elsewhere which are correlated with the onset of severe northernhemisphere glaciation 2.5 m.y. ago is not obvious in the Hess Rise data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The late Quaternary sequence off eastern South Island, New Zealand, consists of ~100 m of alternating bluish gray pelagic oozes and greenish gray hemipelagic oozes that extend uninterruptedly back to the Brunhes/Matuyama boundary (0.73 m.y.). A very high resolution (~2400 yr.) record of sediment texture, calcium carbonate content, and planktonic and benthic foraminiferal oxygen and carbon isotope composition demonstrates an in-phase cyclical fluctuation between the sedimentary parameters that closely correspond to the pelagic-hemipelagic sedimentation cycles and the isotope composition. Pelagic oozes, formed during interglacial periods of high eustatic sea level, are characterized by calcareous microfossils, relative enrichment in sand and clay sizes, high carbonate contents, reduced delta18O values, and increased delta13C values. Hemipelagic oozes, associated with glacial episodes and lowered eustatic sea level, include common terrigenous material and siliceous microfossils, are enriched in silt sizes, have low carbonate contents, high delta18O values, and low delta13C values. The history of alpine glaciations and associated erosion of the South Island of New Zealand, as expressed by the appearance of hemipelagic oozes, can be correlated directly with the major fluctuations of Northern Hemisphere ice sheets as expressed by the influence of eustatic sea-level changes on the oxygen isotope composition of both planktonic and benthic foraminifers. This high-accumulation-rate record contains conspicuous intervals of highfrequency, high-amplitude isotope variability including the presence of multiple glacial/interglacial intervals within single isotope stages, and offers one of the best sections cored to date for detailed study of the evolution and history of climate change over the last 0.75 m.y.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two sediment cores from the West Spitsbergen area, Euro-Arctic margin, MD99-2304 and MD99-2305, have been investigated for paleoceanographic proxies, including benthic and planktonic foraminifera, benthic foraminiferal stable isotopes and ice rafted debris. Core MD99-2304 is located on the upper continental margin, reflecting variations in the influx of Atlantic Water in the West Spitsbergen Current. Core MD99-2305 is located in Van Mijenfjord, picturing variations in tidewater glacier activity as well as fjord-ocean circulation changes. Surface water warmer than today, was present on the margin as soon as the Van Mijenfjord was deglaciated by 11,200 cal. years BP. Relatively warm water invaded the fjord bottom almost immediately after the deglaciation. A relatively warm early Holocene was followed by an abrupt cooling at 8800 cal. years BP on the continental margin. Another cooling in the fjord record, 8000-4000 cal. years BP, is documented by an increase in ice rafted debris and an increase in benthic foraminiferal delta18O. The IRD-record indicates that central Spitsbergen never was completely deglaciated during the Holocene. Relatively cool and stable conditions similar to the present were established about 4000 cal. years BP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Cenozoic multi-species record of benthic foraminiferal calcite Sr/Ca has been produced and is corrected for interspecific offsets (typically less than 0.3 mmol/mol) and for the linear relationship between decreasing benthic foraminiferal Sr/Ca and increasing water depth. The water depth correction, determined from Holocene, Late Glacial Maximum and Eocene paleowater-depth transects, is ~0.1 mmol/mol/km. The corrected Cenozoic benthic foraminiferal Sr/Ca record ranges from 1.2 to 2.0 mmol/mol, and has been interpreted in terms of long-term changes in seawater Sr/Ca, enabling issues related to higher-resolution variability in Sr/Ca to be ignored. We estimate that seawater Sr/Ca was ~1.5 times modern values in the late Cretaceous, but declined rapidly into the Paleogene. Following a minimum in the Eocene, seawater Sr/Ca increased gradually through to the present day with a minimum superimposed on this trend centered in the late Miocene. By assuming scenarios for changing seawater calcium concentration, and using published carbonate accumulation rate data combined with suitable values for Sr partition coefficients into carbonates, the seawater Sr/Ca record is used to estimate global average river Sr fluxes. These fluxes are used in conjunction with the seawater strontium isotope curve and estimates of hydrothermal activity/tectonic outgassing to calculate changes in global average river 87Sr/86Sr through the Cenozoic. The absolute magnitude of Sr fluxes and isotopic compositions calculated in this way are subject to relatively large uncertainties. Nevertheless, our results suggest that river Sr flux increased from 35 Ma to the present day (roughly two-fold) accompanied by an overall increase in 87Sr/86Sr (by ~0 to 0.001). Between 75 and 35 Ma, river 87Sr/86Sr also increased (by ~0.001 to 0.002) but was accompanied by a decrease (two- to three-fold) in river Sr flux.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to investigate the paleoceanographic record of dissolution of calcium carbonate (CaCO3) in the central equatorial Pacific Ocean, we have studied the relationship between three indices of foraminiferal dissolution and the concentration and accumulation of CaCO3, opal, and Corg in Core WEC8803B-GC51 (1.3°N, 133.6°W; 4410 m). This core spans the past 413 kyr of deposition and moved in and out of the lysoclinal transition zone during glacial-interglacial cycles of CaCO3 production and dissolution. The record of dissolution intensity provided by foraminiferal fragmentation, the proportion of benthic foraminifera, and the foraminiferal dissolution index consistently indicates that the past corrosion of pelagic CaCO3 in the central equatorial Pacific does not vary with the observed sedimentary concentration of CaCO3. Although there is a weak low-frequency variation (~100 kyr) in dissolution intensity, it is unrelated to sedimentary CaCO3 concentration. There are many shorter-lived episodes where high CaCO3 concentration is coincident with poor foraminiferal preservation, and where, conversely, low CaCO3 concentration is coincident with superb foraminiferal preservation. Spectral analyses indicate that dissolution maxima consistently lagged glacial maxima (manifest by the SPECMAP delta18O stack) in the 100-kyr orbital band. Additionally, there is no relationship between dissolution and the accumulation of biogenic opal or Corg or between dissolution and the burial ratio of Corg/CINorg (calculated from Corg and CaCO3). Because previous studies of this core strongly suggest that surface water productivity varied closely with CaCO3 accumulation, both the mechanistic decoupling of carbonate dissolution from CaCO3 concentration (and from biogenic accumulation) and the substantial phase shift between dissolution and global glacial periodicity effectively obscure any simple link between export production, CaCO3 concentration, and dissolution of sedimentary CaCO3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine whether or not a relationship exists between the late Miocene carbon isotope shift (~7.6-6.6 Ma) and marine productivity at four sites from the Indian and Pacific Oceans (Ocean Drilling Program Sites 721, 1146, 1172, and 846). We use a multiproxy approach based on benthic foraminiferal accumulation rates, elemental ratios, and dissolution indices, and we compare these data to benthic foraminiferal d13C values measured on the same samples. Although some of these sites have been targeted previously in studies of either the late Miocene/early Pliocene "biogenic bloom" (Sites 721 and 846) or the late Miocene carbon isotope shift (Site 1172), our records are the first to establish paired proxy records of carbon isotopes and paleoproductivity allowing a direct assessment of a potential link. Our results indicate that at all sites, productivity increased sometime during the d13C shift; at three sites (721, 1146, and 846), productivity increased at the beginning of the shift. The correlation coefficients derived from linear regression between micropaleontologically derived productivity and foraminiferal d13C values are relatively high during the time interval containing the late Miocene d13C shift (and statistically significant at three of the sites). Carbon flux and isotope mass balance considerations illustrate that transfer of organic matter between the terrestrial and marine reservoirs together with enhanced oceanic upwelling best approximates observed changes in carbon isotope records and paleoproductivity. We note that long-term trend in the Site 846 paleoproductivity record can be correlated to the long-term trend in the Site 848 eolian flux reconstructions of Hovan (1995, doi:10.2973/odp.proc.sr.138.132.1995) hinting at a link between strengthened wind regime and productivity during the late Miocene.