992 resultados para Acalospora colombiana (AC)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Abnormal intragastric distribution of food (IDF) and a phasic contractility in the proximal stomach have been related to dyspeptic symptoms. Thus, the behaviour of the stomach and the proximal region, in particular, continues to attract attention and demand for reliable and comfortable techniques. The aims of this study were to employ AC Biosus-ceptometry (ACB) and scintigraphy to evaluate IDF and gastric motor activity in humans. Fifteen healthy volunteers ingested 60 mL of yogurt containing 2 mCi of Tc-99m and 4 g of ferrite. Each volunteer had gastric motility and IDF evaluated twice on separate days; on one occasion by ACB and another by scintigraphy. Digital signal processing was performed in MatLab (Mathworks Inc., Natick, MA, USA). Results were expressed as mean +/- SD. Similar results of distal accumulation time (P < 0.001) were obtained for scintigraphy (6.93 +/- 3.25 min) and for ACB (7.04 +/- 3.65 min). Fast Fourier Transform revealed two dominant frequencies (P > 0.9). Besides the well-know frequency of 3 cpm, our results showed identical frequencies in proximal stomach recordings (P < 0.001) for scintigraphic (1.01 +/- 0.01 cpm) and ACB (0.98 +/- 0.06 cpm). In summary, our data showed that scintigraphy and ACB are promising techniques to evaluate several aspects of gastric motility. Moreover, ACB is non-invasive, radiation-free and deserves the same importance as conventional methods for this kind of analysis.
Magnetic images of the disintegration process of tablets in the human stomach by ac biosusceptometry
Resumo:
Oral administration of solid dosage forms is usually preferred in drug therapy. Conventional imaging methods are essential tools to investigate the in vivo performance of these formulations. The non-invasive technique of ac biosusceptometry has been introduced as an alternative in studies focusing on gastrointestinal motility and, more recently, to evaluate the behaviour of magnetic tablets in vivo. The aim of this work was to employ a multisensor ac biosusceptometer system to obtain magnetic images of disintegration of tablets in vitro and in the human stomach. The results showed that the transition between the magnetic marker and the magnetic tracer characterized the onset of disintegration (t(50)) and occurred in a short time interval (1.1 +/- 0.4 min). The multisensor ac biosusceptometer was reliable to monitor and analyse the in vivo performance of magnetic tablets showing accuracy to quantify disintegration through the magnetic images and to characterize the profile of this process.
Resumo:
The oral administration is a common route in the drug therapy and the solid pharmaceutical forms are widely used. Although much about the performance of these formulations can be learned from in vitro studies using conventional methods, evaluation in vivo is essential in product development. The knowledge of the gastrointestinal transit and how the physiological variables can interfere with the disintegration and drug absorption is a prerequisite for development of dosage forms. The aim of this work was to employing the ac biosusceptometry (ACB) to monitoring magnetic tablets in the human gastrointestinal tract and to obtain the magnetic images of the disintegration process in the colonic region. The ac biosusceptometry showed accuracy in the quantification of the gastric residence time, the intestinal transit time and the disintegration time (DT) of the magnetic formulations in the human gastrointestinal tract. Moreover, ac biosusceptometry is a non-invasive technique, radiation-free and harmless to the volunteers, as well as an important research tool in the pharmaceutical, pharmacological and physiological investigations. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Purpose. To employ the AC Biosusceptometry (ACB) technique to evaluate in vitro and in vivo characteristics of enteric coated magnetic hydroxypropyl methylcellulose (HPMC) capsules and to image the disintegration process.Materials and Methods. HPMC capsules filled with ferrite (MnFe2O4) and coated with Eudragit (R) were evaluated using USP XXII method and administered to fasted volunteers. Single and multisensor ACB systems were used to characterize the gastrointestinal (GI) motility and to determine gastric residence time (GRT), small intestinal transit time (SITT) and orocaecal transit time (OCTT). Mean disintegration time (t (50)) was quantified from 50% increase of pixels in the imaging area.Results. In vitro and in vivo performance of the magnetic HPMC capsules as well as the disintegration process were monitored using ACB systems. The mean disintegration time (t (50)) calculated for in vitro was 25 +/- 5 min and for in vivo was 13 +/- 5 min. In vivo also were determined mean values for GRT (55 +/- 19 min), SITT (185 +/- 82 min) and OCTT (240 +/- 88 min).Conclusions. AC Biosusceptometry is a non-invasive technique originally proposed to monitoring pharmaceutical dosage forms orally administered and to image the disintegration process.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The mechanical nature of gastric contraction activity (GCA) plays an important role in gastrointestinal motility. The aim of this study was to detect GCA in anaesthetized dogs, using simultaneously the techniques of AC biosusceptometry (ACB) and manometry, analysing the characteristics of frequency and amplitude (motility index) of GCA, modified by drugs such as prostigmine and N-butyl-scopolamine. The ACB method is based on a differential transformer of magnetic flux and the magnetic tracer works as a changeable external nucleus. This magnetic tracer causes a modification in the magnetic flux, which is detected by the coils. The results obtained from the ACB showed a performance comparable to the manometry in measuring the modifications in the frequency and amplitude of the GCA. We concluded that this ACB technique, non-invasive and free of ionizing radiation, is an option for evaluating GCA and can be employed in future clinical studies.
Resumo:
Analysis of physical phenomena that occurs during tablet disintegration has been studied by several experimental approaches; however none of them satisfactorily describe this process. The aim of this study was to investigate the influence of compression force on the tablets by associating the AC Biosusceptometry with consolidated methods in order to validate the biomagnetic technique as a tool for quality control in pharmaceutical processes.Tablets obtained at five compression levels were submitted to mechanical properties tests. For uncoated tablets, water uptake and disintegration force measurements were performed in order to compare with magnetic data. For coated tablets, magnetic measurements were carried out to establish a relationship between physical parameters of the disintegration process. According to the results, differences between the compression levels were found for water uptake, force development and magnetic area variation measurements. ACB method was able to estimate the disintegration properties as well as the kinetics of disintegration process for uncoated and coated tablets. This study provided a new approach for in vitro investigation and validated this biomagnetic technique as a tool for quality control for pharmaceutical industry. Moreover, using ACB will also be possible to test these parameters in humans allowing to establish an in vitro/in vivo correlation (IVIVC). (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Doped zirconia has been used in electronic applications in the cubic crystalline phase. Ceria-stabilized tetragonal zirconia presents high toughness and can also be applied as solid electrolytes. The tetragonal phase of zirconia can be stabilized at room temperature with ceria in a broad range of composition. However, CeO2-ZrO2 has low sinterability. so it is important to investigate the effect of sintering dopants. In this study the effect of iron, copper. manganese and nickel was investigated. The dopants such as iron and copper lowered the sintering temperature from 1600 degreesC down to 1450 degreesC, with a percentage of tetragonal phase retained at room temperature higher than 98% and also with an increase of the electrical conductivity. The electrical conductivity was measured using impedance spectroscopy. The grain boundary contribution was determined and the activation energy associated with the ionic conduction was 1.04 eV. The dopants can also promote a grain boundary cleanliness verified by blocking effect measurement. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The electric properties of the sodium niobate perovskite ceramic were investigated by impedance spectroscopy in the frequency range from 5 Hz to 13 MHz and from room temperature up to 1073 K, in a thermal cycle. Both capacitance and conductivity exhibit an anomaly at around 600 K as a function of the temperature and frequency. The electric conductivity as a function of angular frequency sigma(omega) follows the relation sigma(omega)=Aomega(s). The values of the exponent s lie in the range 0.15less than or equal tosless than or equal to0.44. These results were discussed considering the conduction mechanism as being a type of polaron hopping. (C) 2003 American Institute of Physics.
Resumo:
Conventionally, pharmaceutical substances are administered orally because the gastrointestinal tract possesses the appropriate features for drug absorption. Nevertheless, the gastrointestinal tract physiology is complex and influenced by many factors. These factors must be completely understood for the optimization of oral drug delivery systems. Although in vitro tests provide information about release and drug absorption profiles, in vivo studies are essential, due to the biological variability. Several techniques have been employed in an attempt to conveniently characterize the behavior of solid dosage forms in vivo. The noninvasive biomagnetic technique of alternate current biosusceptometry (ACB) has been used in studies focusing on gastrointestinal motility and, more recently, to evaluate the performance of magnetic dosage forms. This article will discuss the main characteristics of AC biosusceptometry and its applicability for determination of the relationship between the human gastrointestinal tract and orally administered pharmaceutical dosage forms. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
An optimisation technique to solve transmission network expansion planning problem, using the AC model, is presented. This is a very complex mixed integer nonlinear programming problem. A constructive heuristic algorithm aimed at obtaining an excellent quality solution for this problem is presented. An interior point method is employed to solve nonlinear programming problems during the solution steps of the algorithm. Results of the tests, carried out with three electrical energy systems, show the capabilities of the method and also the viability of using the AC model to solve the problem.
Resumo:
This work presents the design and procedure of a DC-to-AC converter using a ZVS Commutation Cell developed by Barbi and Martins (1991) and applied to the family of DC-to-DC PWM converters. Firstly, we show the cell applied to buck converter. The stages of operation and the main current and voltage equations of the resonant devices are presented. Next, we adapt the converter to the regenerative operation mode. Hence, the full bridge converter at low frequency operation is conected on the DC-to-DC stage (at high frequency) output ends (Seixas, 1993). Commutation of zero voltage for all switches, PWM at constant frequency and neither overvoltage nor additional current stress are observed by digital simulation. The design example and experimental results obtained by prototype rated at 275 V, 1 kW and 40 kHz are also presented.