991 resultados para Absorption coefficient, 525 nm


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, we have synthesised carbon nanoparticles (CNPs) through a relatively simple process using a hydrocarbon precursor. These synthesised CNPs in the form of elongated spherules and/or agglomerates of 30-55 nm were further used as a support to anchor platinum nanoparticles. The broad light absorption (300-700 nm) and a facile charge transfer property of CNPs in addition to the plasmonic property of Pt make these platinized carbon nanostructures (CNPs/Pt) a promising candidate in photocatalytic water splitting. The photocatalytic activity was evaluated using ethanol as the sacrificial donor. The photocatalyst has shown remarkable activity for hydrogen production under UV-visible light while retaining its stability for nearly 70 h. The broadband absorption of CNPs, along with the Surface Plasmon Resonance (SPR) effect of PtNPs singly and in composites has pronounced influence on the photocatalytic activity, which has not been explored earlier. The steady rate of hydrogen was observed to be 20 mu mol h(-1) with an exceptional cumulative hydrogen yield of 32.16 mmol h(-1) g(-1) observed for CNPs/Pt, which is significantly higher than that reported for carbon-based systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of molecular materials in optoelectronic devices critically depends upon their electronic properties and solid-state structure. In this report, we have synthesized sulfur and selenium based (T4BT and T4BSe) donor-acceptor-donor (D-A-D) organic derivatives in order to understand the structure-property correlation in organic semiconductors by selectively tuning the chalcogen atom. The photophysical properties exhibit a significant alteration upon varying a single atom in the molecular structure. A joint theoretical and experimental investigation suggests that replacing sulfur with selenium significantly reduces the band gap and molar absorption coefficient because of lower electronegativity and ionization potential of selenium. Single-crystal X-ray diffraction analysis showed differences in their solid-state packing and intermolecular interactions. Subsequently, difference in the solid-state packing results variation in self-assembly. Micorstructural changes within these materials are correlated to their electrical resistance variation, investigated by conducting probe atomic force microscopy (CP-AFM) measurements. These results provide useful guidelines to understand the fundamental properties of D-A-D materials prepared by atomistic modulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A single step process for the synthesis of size-controlled silver nanoparticles has been developed using a bifunctional molecule, octadecylamine (ODA). Octadecylamine complexes to Ag+ ions electrostatically, reduce them, and subsequently stabilizes the nanoparticles thus formed. Hence, octadecylamine simultaneously functions as both a reducing and a stabilizing agent. The amine-capped nanoparticles can be obtained in the form of dry powder, which is readily redispersible in aqueous and organic solvents. The particle size, and the nucleation and growth kinetics of silver nanoparticles could be tuned by varying the molar ratio of ODA to AgNO3. The UV-vis spectra of nanoparticles prepared with different concentrations of ODA displayed the well-defined plasmon band with maximum absorption around 425 nm. The formation of silver metallic nanoparticles was confirmed by their XRD pattern. The binding of ODA molecule on the surface of silver has been studied by FT-IR and NMR spectroscopy. The formation of well-dispersed spherical Ag nanoparticles has been confirmed by TEM analysis. The particle size and distribution are found to be dependent on the molar concentration of the amine molecule. Open aperture z-scans have been performed to measure the nonlinearity of Ag nanoparticles. (C) 2015 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diffuse optical tomography (DOT) using near-infrared light is a promising tool for non-invasive imaging of deep tissue. This technique is capable of quantitative reconstruction of absorption (mu(a)) and scattering coefficient (mu(s)) inhomogeneities in the tissue. The rationale for reconstructing the optical property map is that the absorption coefficient variation provides diagnostic information about metabolic and disease states of the tissue. The aim of DOT is to reconstruct the internal tissue cross section with good spatial resolution and contrast from noisy measurements non-invasively. We develop a region-of-interest scanning system based on DOT principles. Modulated light is injected into the phantom/tissue through one of the four light emitting diode sources. The light traversing through the tissue gets partially absorbed and scattered multiple times. The intensity and phase of the exiting light are measured using a set of photodetectors. The light transport through a tissue is diffusive in nature and is modeled using radiative transfer equation. However, a simplified model based on diffusion equation (DE) can be used if the system satisfies following conditions: (a) the optical parameter of the inhomogeneity is close to the optical property of the background, and (b) mu(s) of the medium is much greater than mu(a) (mu(s) >> mu(a)). The light transport through a highly scattering tissue satisfies both of these conditions. A discrete version of DE based on finite element method is used for solving the inverse problem. The depth of probing light inside the tissue depends on the wavelength of light, absorption, and scattering coefficients of the medium and the separation between the source and detector locations. Extensive simulation studies have been carried out and the results are validated using two sets of experimental measurements. The utility of the system can be further improved by using multiple wavelength light sources. In such a scheme, the spectroscopic variation of absorption coefficient in the tissue can be used to arrive at the oxygenation changes in the tissue. (C) 2016 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Cu2SnS3 thin films were deposited using an economic, solution processible, spin coating technique. The films were found to possess a tetragonal crystal structure using X-ray diffraction. The film morphology and the particle size were determined using scanning electron microscopy. The various planes in the crystal were observed using transmission electron microscopy. The optimum band gap of 1.23 eV and a high absorption coefficient of 104 cm-1 corroborate its application as a photoactive material. The visible and infrared (IR) photo response was studied for various illumination intensities. The current increased by one order from a dark current of 0.31 mu A to a current of 1.78 mu A at 1.05 suns and 8.7 mu A under 477.7 mW/cm(2) IR illumination intensity, at 3 V applied bias. The responsivity, sensitivity, external quantum efficiency and specific detectivity were found to be 10.93 mA/W, 5.74, 2.47% and 3.47 x 10(10) Jones respectively at 1.05 suns and 16.32 mA/W, 27.16, 2.53% and 5.10 x 10(10) Jones respectively at 477.7 mW/cm(2) IR illumination. The transient photoresponse was measured both for visible and IR illuminations. (C) 2016 Author(s).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Triarylborane-A(2)H(2) (1) and triarylborane-Zn-A(2)H(2) porphyrins (2) have been synthesized by acid catalyzed condensation of 4-dimesitylboryl-benzaldehyde and dipyrromethane under ambient conditions. Compounds 1 and 2 showed multiple emission bands upon excitation at the triarylborane dominated absorption region (350 nm). Detailed experimental and computational studies show that the multiple emission features of 1 and 2 arise as a result of a partial energy transfer from the donor (triarylborane) to the acceptor (porphyrin) moieties. Compounds 1 and 2 showed very high selectivities towards fluoride ions compared to other competing anions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

介绍了中子相衬和中子层析的工作原理,提出了中子相衬层析成像方法.这种方法兼备了相衬和层析的各自优点,不采用干涉术,能高分辨率地重构待测样品的三维空间位相分布,能测试和分辨吸收系数非常相近样品的空间结构.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

利用解析的方法研究了非相对论线偏振激光与等离子体相互作用中的J×B加热吸收机理,建立了一种包含两类有质动力效应在内的自洽理论.探讨了密度轮廓修正下的J×B加热机理,给出了相应的吸收系数随激光场强度变化的关系曲线.研究发现,当激光场强度A0=20时,J×B加热所导致的吸收系数fabs约为2.8%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

发展了一种新的蒙特卡罗方法用于研究超短激光脉冲进入混浊介质后的光子传播路径。这种方法可以获得任一时刻的光子最可几传播路径,研究了混浊介质的光学参数如何影响光子的最可几传播路径,发现吸收系数不影响光子的最可几传播路径。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the conversion of near-ultraviolet radiation of 250-350 nm into near-infrared emission of 970-1100 nm in Yb3+-doped transparent glass ceramics containing Ba2TiSi2O8 nanocrystals due to the energy transfer from the silicon-oxygen-related defects to Yb3+ ions. Efficient Yb3+ emission (F-2(5/2)-> F-2(7/2)) was detected under the excitation of defects absorption at 314 nm. The occurrence of energy transfer is proven by both steady state and time-resolved emission spectra, respectively, at 15 K. The Yb2O3 concentration dependent energy transfer efficiency has also been evaluated, and the maximum value is 65% for 8 mol % Yb2O3 doped glass ceramic. These materials are promising for the enhancement of photovoltaic conversion efficiency of silicon solar cells via spectra modification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prospect of terawatt-scale electricity generation using a photovoltaic (PV) device places strict requirements on the active semiconductor optoelectronic properties and elemental abundance. After reviewing the constraints placed on an "earth-abundant" solar absorber, we find zinc phosphide (α-Zn3P2) to be an ideal candidate. In addition to its near-optimal direct band gap of 1.5 eV, high visible-light absorption coefficient (>104 cm-1), and long minority-carrier diffusion length (>5 μm), Zn3P2 is composed of abundant Zn and P elements and has excellent physical properties for scalable thin-film deposition. However, to date, a Zn3P2 device of sufficient efficiency for commercial applications has not been demonstrated. Record efficiencies of 6.0% for multicrystalline and 4.3% for thin-film cells have been reported, respectively. Performance has been limited by the intrinsic p-type conductivity of Zn3P2 which restricts us to Schottky and heterojunction device designs. Due to our poor understanding of Zn3P2 interfaces, an ideal heterojunction partner has not yet been found.

The goal of this thesis is to explore the upper limit of solar conversion efficiency achievable with a Zn3P2 absorber through the design of an optimal heterojunction PV device. To do so, we investigate three key aspects of material growth, interface energetics, and device design. First, the growth of Zn3P2 on GaAs(001) is studied using compound-source molecular-beam epitaxy (MBE). We successfully demonstrate the pseudomorphic growth of Zn3P2 epilayers of controlled orientation and optoelectronic properties. Next, the energy-band alignments of epitaxial Zn3P2 and II-VI and III-V semiconductor interfaces are measured via high-resolution x-ray photoelectron spectroscopy in order to determine the most appropriate heterojunction partner. From this work, we identify ZnSe as a nearly ideal n-type emitter for a Zn3P2 PV device. Finally, various II-VI/Zn3P2 heterojunction solar cells designs are fabricated, including substrate and superstrate architectures, and evaluated based on their solar conversion efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bulk n-lnSb is investigated at a heterodyne detector for the submillimeter wavelength region. Two modes or operation are investigated: (1) the Rollin or hot electron bolometer mode (zero magnetic field), and (2) the Putley mode (quantizing magnetic field). The highlight of the thesis work is the pioneering demonstration or the Putley mode mixer at several frequencies. For example, a double-sideband system noise temperature of about 510K was obtained using a 812 GHz methanol laser for the local oscillator. This performance is at least a factor or 10 more sensitive than any other performance reported to date at the same frequency. In addition, the Putley mode mixer achieved system noise temperatures of 250K at 492 GHz and 350K at 625 GHz. The 492 GHz performance is about 50% better and the 625 GHz is about 100% better than previous best performances established by the Rollin-mode mixer. To achieve these results, it was necessary to design a totally new ultra-low noise, room-temperature preamp to handle the higher source impedance imposed by the Putley mode operation. This preamp has considerably less input capacitance than comparably noisy, ambient designs.

In addition to advancing receiver technology, this thesis also presents several novel results regarding the physics of n-lnSb at low temperatures. A Fourier transform spectrometer was constructed and used to measure the submillimeter wave absorption coefficient of relatively pure material at liquid helium temperatures and in zero magnetic field. Below 4.2K, the absorption coefficient was found to decrease with frequency much faster than predicted by Drudian theory. Much better agreement with experiment was obtained using a quantum theory based on inverse-Bremmstrahlung in a solid. Also the noise of the Rollin-mode detector at 4.2K was accurately measured and compared with theory. The power spectrum is found to be well fit by a recent theory of non- equilibrium noise due to Mather. Surprisingly, when biased for optimum detector performance, high purity lnSb cooled to liquid helium temperatures generates less noise than that predicted by simple non-equilibrium Johnson noise theory alone. This explains in part the excellent performance of the Rollin-mode detector in the millimeter wavelength region.

Again using the Fourier transform spectrometer, spectra are obtained of the responsivity and direct detection NEP as a function of magnetic field in the range 20-110 cm-1. The results show a discernable peak in the detector response at the conduction electron cyclotron resonance frequency tor magnetic fields as low as 3 KG at bath temperatures of 2.0K. The spectra also display the well-known peak due to the cyclotron resonance of electrons bound to impurity states. The magnitude of responsivity at both peaks is roughly constant with magnet1c field and is comparable to the low frequency Rollin-mode response. The NEP at the peaks is found to be much better than previous values at the same frequency and comparable to the best long wavelength results previously reported. For example, a value NEP=4.5x10-13/Hz1/2 is measured at 4.2K, 6 KG and 40 cm-1. Study of the responsivity under conditions of impact ionization showed a dramatic disappearance of the impurity electron resonance while the conduction electron resonance remained constant. This observation offers the first concrete evidence that the mobility of an electron in the N=0 and N=1 Landau levels is different. Finally, these direct detection experiments indicate that the excellent heterodyne performance achieved at 812 GHz should be attainable up to frequencies of at least 1200 GHz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth of bulky and platelet shaped α-monoclinic crystals is discussed. A simple method is devised for identifying and orienting them.

The density, previously in disagreement with the value calculated from x-ray studies, is carefully redetermined, and found to be in good agreement with the latter.

The relative dielectric constant is determined, an effort being made to eliminate errors inherent in previous measurements, which have not been in agreement. A two parameter model is derived which explains the anisotropy in the relative dielectric constant of orthorhombic sulfur, which is also composed of 8-atom puckered ring molecules. The model works less well for α-monoclinic selenium. The relative dielectric constant anisotropy is quite noticeable, being 6.06 along the crystal b axis, and 8.52-8.93 normal to the axis.

Thin crystal platelets of α-monoclinic selenium (less than 1µ thick) are used to extend optical transmission measurements up to 4.5eV. Previously the measurements extended up to 2.1 eV, limited by the thickness of the available crystals. The absorption edge is at 2.20 eV, with changes in slope of the absorption coefficient occurring at 2.85 eV and 3.8 eV. Measurement of transmission through solutions of selenium in CS_2 and trichlorethylene yield an absorption edge of 2.75 eV. There is evidence the selenium exists in solution partly as Se_8 rings, the building block of monoclinic selenium. Transmission is measured at low temperatures (80°K and 10°K) using the platelets. The absorption edge is at 2.38 eV and 2.39 eV, respectively, for the two temperatures. Measurements at low temperatures with polarized and unpolarized light reveal interesting absorption anisotropy near 2.65 eV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[ES]Este proyecto tiene como objetivo servir de punto de partida al estudio del comportamiento acústico de las chapas perforadas como solución para el revestimiento de fachadas. Para ello se presentan dos posibles modelos de fachada analizados a través del software SoundFlow que determina su coeficiente de absorción. Con el fin de encontrar la solución más adecuada nos centraremos en las siguientes variables: separación de la chapa a la pared (d), diámetro del agujero de las chapas (Ø), y porcentaje de área perforada de la chapa o porosidad (p). Previamente se estudiarán las principales fuentes de contaminación acústica y su espectro de ruido para determinar la frecuencia en la que deben centrarse nuestros esfuerzos por aumentar el coeficiente de absorción.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new composition content quaternary-alloy-based phase change thin film, Sb-rich AgInSbTe, has been prepared by DC-magnetron sputtering on a K9 glass substrate. After the film has been subsequently annealed at 200degreesC for 30 min, it becomes a crystalline thin film. The diffraction peak of antimony (Sb) are observed by shallow (0.5 degree) x-ray diffraction in the quaternary alloy thin film. The analyses of the measurement from differential scanning calorimetry (DSC) show that the crystallization temperature of the phase change thin film is about 190degreesC and increases with the heating rate. By Kissinger plot, the activation energy for crystallization is determined to be 3.05eV. The reflectivity, refractive index and extinction coefficient of the crystalline and amorphous phase change thin films are presented. The optical absorption coefficient of the phase change thin films as a function of photon energy is obtained from the extinction coefficient. The optical band gaps of the amorphous and crystallization phase change thin films are 0.265eV and 1.127eV, respectively.