998 resultados para ATP synthesis
Resumo:
Report for the scientific sojourn carried out at Massachusetts General Hospital Cancer Center-Harvard Medical School, Estats Units, from 2010 to 2011. The project aims to study the aggregation behavior of amphiphilic molecules in the continuous phase of highly concentrated emulsions, which can be used as templates for the synthesis of meso/macroporous materials. At this stage of the project, we have investigated the self-assembly of diblock and triblock surfactants under the effect of a confined geometry being surrounded by the droplets of the dispersed phase. These droplets limit the growth of the aggregates, deeply modify their orientation and hence alter their spatial arrangement as compared to the self-assembly taking place far enough from any boundary surface, that is in the bulk. By performing Monte Carlo simulations, we have showed that the interface between the dispersed and continuous phases as well as its shape has a significant impact on the structural order of the resulting aggregates and hence on the potential applications of highly concentrated emulsions as reaction media, drug delivery systems, or templates for meso/macroporous materials. Due to the combined effect of symmetry breaking and morphological frustration, very intriguing structures, such as square columnar liquid crystals, twisted X-shaped aggregates, and helical phases of cylindrical aggregates, never observed in the bulk for the same model surfactant, have been found. The presence of other more conventional structures, such as micelles and cubic and hexagonal liquid crystals, formed at low and high amphiphilic concentrations, respectively, further enhance the interest on this already rich aggregation behavior.
Resumo:
Tonoplast-enriched membranes were prepared from maize (Zea mays L. cv LG 11) primary roots, using sucrose nonlinear gradients. The functional molecular size of the tonoplast ATP-and PPi-dependent proton pumps were analyzed by radiation inactivation. Glucose-6-phosphate dehydrogenase (G6PDH) was added as an internal standard. Frozen samples (-196 degrees C) of the membranes were irradiated with (60)Co for different periods of time. After thawing the samples, the activities of G6PDH, ATPase, and PPase were tested. By applying target theory, the functional sizes of the ATPase and PPase in situ were found to be around 540 and 160 kilodaltons, respectively. The two activities were solubilized and separated by gel filtration chromatography. The different polypeptides copurifying with the two pumps were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Two bands (around 59 and 65 kilodaltons) were associated with the ATPase activity, whereas a double band (around 40 kilodaltons) was recovered with the PPase activity.
Resumo:
Transgenic plants producing peroxisomal polyhydroxy- alkanoate (PHA) from intermediates of fatty acid degradation were used to study carbon flow through the beta-oxidation cycle. Growth of transgenic plants in media containing fatty acids conjugated to Tween detergents resulted in an increased accumulation of PHA and incorporation into the polyester of monomers derived from the beta-oxidation of these fatty acids. Tween-laurate was a stronger inducer of beta-oxidation, as measured by acyl-CoA oxidase activity, and a more potent modulator of PHA quantity and monomer composition than Tween-oleate. Plants co-expressing a peroxisomal PHA synthase with a capryl-acyl carrier protein thioesterase from Cuphea lanceolata produced eightfold more PHA compared to plants expressing only the PHA synthase. PHA produced in double transgenic plants contained mainly saturated monomers ranging from 6 to 10 carbons, indicating an enhanced flow of capric acid towards beta-oxidation. Together, these results support the hypothesis that plant cells have mechanisms which sense levels of free or esterified unusual fatty acids, resulting in changes in the activity of the beta-oxidation cycle as well as removal and degradation of these unusual fatty acids through beta-oxidation. Such enhanced flow of fatty acids through beta-oxidation can be utilized to modulate the amount and composition of PHA produced in transgenic plants. Furthermore, synthesis of PHAs in plants can be used as a new tool to study the quality and relative quantity of the carbon flow through beta-oxidation as well as to analyse the degradation pathway of unusual fatty acids.
Resumo:
Quinupristin-dalfopristin (Q-D) synergizes with cefepime for the treatment of methicillin-resistant Staphylococcus aureus (MRSA). Here, we studied whether the synergism was restricted to MRSA and if it extended to non-beta-lactam cell wall inhibitors or to other inhibitors of protein synthesis. Three MRSA and two methicillin-susceptible S. aureus (MSSA) strains were tested, including an isogenic pair of mecA (-)/mecA (+) S. aureus Newman. The drug interactions were determined by fractional inhibitory concentration (FIC) indices and population analysis profiles. The antibacterial drugs that we used included beta-lactam (cefepime) and non-beta-lactam cell wall inhibitors (D-cycloserine, fosfomycin, vancomycin, teicoplanin), inhibitors of protein synthesis (Q-D, erythromycin, chloramphenicol, tetracycline, linezolid, fusidic acid), and polynucleotide inhibitors (cotrimoxazole, ciprofloxacin). The addition of each protein inhibitor to cefepime was synergistic (FIC ≤ 0.5) or additive (FIC > 0.5 but < 1) against MRSA, but mostly indifferent against MSSA (FIC ≥ 1 but ≤ 4). This segregation was not observed after adding cotrimoxazole or ciprofloxacin to cefepime. Population analysis profiles were performed on plates in the presence of increasing concentrations of the cell wall inhibitors plus 0.25 × minimum inhibitory concentration (MIC) of Q-D. Cefepime combined with Q-D was synergistic against MRSA, but D-cycloserine and glycopeptides were not. Thus, the synergism was specific to beta-lactam antibiotics. Moreover, the synergism was not lost against fem mutants, indicating that it acted at another level. The restriction of the beneficial effect to MRSA suggests that the functionality of penicillin-binding protein 2A (PBP2A) was affected, either directly or indirectly. Further studies are necessary in order to provide a mechanism for this positive interaction.
Resumo:
A series of new benzolactam derivatives was synthesized and the derivatives were evaluated for theiraffinities at the dopamine D1, D2, and D3 receptors. Some of these compounds showed high D2 and/orD3 affinity and selectivity over the D1 receptor. The SAR study of these compounds revealed structuralcharacteristics that decisively influenced their D2 and D3 affinities. Structural models of the complexesbetween some of the most representative compounds of this series and the D2 and D3 receptors wereobtained with the aim of rationalizing the observed experimental results. Moreover, selected compoundsshowed moderate binding affinity on 5-HT2A which could contribute to reducing the occurrence of extrapyramidalside effects as potential antipsychotics.
Resumo:
Short-chain-length-medium-chain-length polyhydroxyalkanoates were synthesized in Saccharomyces cerevisiae from intermediates of the beta-oxidation cycle by expressing the polyhydroxyalkanoate synthases from Aeromonas caviae and Ralstonia eutropha in the peroxisomes. The quantity of polymer produced was increased by using a mutant of the beta-oxidation-associated multifunctional enzyme with low dehydrogenase activity toward R-3-hydroxybutyryl coenzyme A.
Resumo:
The synthesis of /-L-fucosylated cysteamine, 3-thiopropionic acid, and 3-thioacetic acid derivatives as building blocks for the preparation of S-neofucopeptides is shown. These compounds were used in the synthesis of new thiofucosides derivatives (8, 9, 9, 10, 22, 22, 24, 26) that show affinity towards E- and P-selectins. They constitute a new series of hydrolytically stable and low-molecular-weight mimetics of the natural SLex tetrasaccharide.
Resumo:
The purpose of this research project is to study current practices in enhancing visibility and protection of highway maintenance vehicles involved in moving operations such as snow removal and shoulder operations, crack sealing, and pothole patching. The results will enable the maintenance staff to adequately assess the applicability and impact of each strategy to their use and budget. The report’s literature review chapter examines the use of maintenance vehicle warning lights, retroreflective tapes, shadow vehicles and truck-mounted attenuators, and advanced vehicle control systems, as well as other practices to improve visibility for both snowplow operators and vehicles. The chapter concludes that the Manual on Uniform Traffic Control Devices does not specify what color or kind of warning lights to use. Thus, a wide variety of lights are being used on maintenance vehicles. The study of the relevant literatures also suggests that there are no clear guidelines for moving work zones at this time. Two types of surveys were conducted to determine current practices to improve visibility and safety in moving work zones across the country and in the state of Iowa. In the first survey of state departments of transportation, most indicated using amber warning lights on their maintenance vehicles. Almost all the responding states indicated using some form of reflective material on their vehicles to make them more visible. Most participating states indicated that the color of their vehicles is orange. Most states indicated using more warning lights on snow removal vehicles than their other maintenance vehicles. All responding state agencies indicated using shadow vehicles and/or truck-mounted attenuators during their moving operations. In the second survey of Iowa counties, most indicated using very similar traffic control and warning devices during their granular road maintenance and snow removal operations. Mounting warning signs and rotating or strobe lights on the rear of maintenance vehicles is common for Iowa counties. The most common warning devices used during the counties’ snow removal operations are reflective tapes, warning flags, strobe lights, and auxiliary headlamps.
Resumo:
Current monitoring techniques for determination of compaction of earthwork and asphalt generally involve destructive testing of the materials following placement. Advances in sensor technologies show significant promise for obtaining necessary information through nondestructive and remote techniques. To develop a better understanding of suitable and potential technologies, this study was undertaken to conduct a synthesis review of nondestructive testing technologies and perform preliminary evaluations of selected technologies to better understand their application to testing of geomaterials (soil fill, aggregate base, asphalt, etc.). This research resulted in a synthesis of potential technologies for compaction monitoring with a strong emphasis on moisture sensing. Techniques were reviewed and selectively evaluated for their potential to improve field quality control operations. Activities included an extensive review of commercially available moisture sensors, literature review, and evaluation of selected technologies. The technologies investigated in this study were dielectric, nuclear, near infrared spectroscopy, seismic, electromagnetic induction, and thermal. The primary disadvantage of all the methods is the small sample volume measured. In addition, all the methods possessed some sensitivity to non-moisture factors that affected the accuracy of the results. As the measurement volume increases, local variances are averaged out providing better accuracy. Most dielectric methods with the exception of ground penetrating radar have a very small measurement volume and are highly sensitive to variations in density, porosity, etc.
Resumo:
The complex etiology of schizophrenia has prompted researchers to develop clozapine-related multitargetstrategies to combat its symptoms. Here we describe a series of new 6-aminomethylbenzofuranones in aneffort to find new chemical structures with balanced affinities for 5-HT2 and dopamine receptors. Throughbiological and computational studies of 5-HT2A and D2 receptors, we identified the receptor serine residuesS3.36 and S5.46 as the molecular keys to explaining the differences in affinity and selectivity betweenthese new compounds for this group of receptors. Specifically, the ability of these compounds to establishone or two H-bonds with these key residues appears to explain their difference in affinity. In addition, wedescribe compound 2 (QF1004B) as a tool to elucidate the role of 5-HT2C receptors in mediating antipsychoticeffects and metabolic adverse events. The compound 16a (QF1018B) showed moderate to high affinitiesfor D2 and 5-HT2A receptors, and a 5-HT2A/D2 ratio was predictive of an atypical antipsychotic profile.
Resumo:
One of the most conserved features of all cancers is a profound reprogramming of cellular metabolism, favoring biosynthetic processes and limiting catalytic processes. With the acquired knowledge of some of these important changes, we have designed a combination therapy in order to force cancer cells to use a particular metabolic pathway that ultimately results in the accumulation of toxic products. This innovative approach consists of blocking lipid synthesis, at the same time that we force the cell, through the inhibition of AMP-activated kinase, to accumulate toxic intermediates, such as malonyl-coenzyme A (malonyl-CoA) or nicotinamide adenine dinucleotide phosphate. This results in excess of oxidative stress and cancer cell death. Our new therapeutic strategy, based on the manipulation of metabolic pathways, will certainly set up the basis for new upcoming studies defining a new paradigm of cancer treatment.
Resumo:
How can an ex-orphan be adopted? Is it possible to do so by attributing to it a key endogenous ligand that regulates its central functions? In the recent issue of Cell, Chakravarthy et al. attempted to answer this question by characterizing a new physiologically relevant ligand for the ex-orphan receptor peroxisome proliferator activated receptor alpha (PPARalpha).
Resumo:
Peroxisome proliferator-activated receptor gamma (PPARgamma) is an essential regulator of adipocyte differentiation, maintenance, and survival. Deregulations of its functions are associated with metabolic diseases. We show here that deletion of one PPARgamma allele not only affected lipid storage but, more surprisingly, also the expression of genes involved in glucose uptake and utilization, the pentose phosphate pathway, fatty acid synthesis, lipolysis, and glycerol export as well as in IR/IGF-1 signaling. These deregulations led to reduced circulating adiponectin levels and an energy crisis in the WAT, reflected in a decrease to nearly half of its intracellular ATP content. In addition, there was a decrease in the metabolic rate and physical activity of the PPARgamma(+/-) mice, which was abolished by thiazolidinedione treatment, thereby linking regulation of the metabolic rate and physical activity to PPARgamma. It is likely that the PPARgamma(+/-) phenotype was due to the observed WAT dysfunction, since the gene expression profiles associated with metabolic pathways were not affected either in the liver or the skeletal muscle. These findings highlight novel roles of PPARgamma in the adipose tissue and underscore the multifaceted action of this receptor in the functional fine tuning of a tissue that is crucial for maintaining the organism in good health.
Resumo:
Arene ruthenium complexes containing long-chain N-ligands L1 = NC5H4-4-COO-C6H4-4-O-(CH2)9-CH3 or L2 = NC5H4-4-COO-(CH2)10-O-C6H4-4-COO-C6H4-4-C6H4-4-CN derived from isonicotinic acid, of the type [(arene)Ru(L)Cl2] (arene = C6H6, L = L1: 1; arene = p-MeC6H4Pr i , L = L1: 2; arene = C6Me6, L = L1: 3; arene = C6H6, L = L2: 4; arene = p-MeC6H4Pr i , L = L2: 5; arene = C6Me6, L = L2: 6) have been synthesized from the corresponding [(arene)RuCl2]2 precursor with the long-chain N-ligand L in dichloromethane. Ruthenium nanoparticles stabilized by L1 have been prepared by the solvent-free reduction of 1 with hydrogen or by reducing [(arene)Ru(H2O)3]SO4 in ethanol in the presence of L1 with hydrogen. These complexes and nanoparticles show a high anticancer activity towards human ovarian cell lines, the highest cytotoxicity being obtained for complex 2 (IC50 = 2 μM for A2780 and 7 μM for A2780cisR)
Resumo:
Neuropeptide Y (NPY) is a potent inhibitor of neurotransmitter release through the Y2 receptor subtype. Specific antagonists for the Y2 receptors have not yet been described. Based on the concept of template-assembled synthetic proteins we have used a cyclic template molecule containing two beta-turn mimetics for covalent attachment of four COOH-terminal fragments RQRYNH2 (NPY 33-36), termed T4-[NPY(33-36)]4. This structurally defined template-assembled synthetic protein has been tested for binding using SK-N-MC and LN319 cell lines that express the Y1 and Y2 receptor, respectively. T4-[NPY(33-36)]4 binds to the Y2 receptor with high affinity (IC50 = 67.2 nM) and has poor binding to the Y1 receptor. This peptidomimetic tested on LN319 cells at concentrations up to 10 microM shows no inhibitory effect on forskolin-stimulated cAMP levels (IC50 for NPY = 2.5 nM). Furthermore, we used confocal microscopy to examine the NPY-induced increase in intracellular calcium in single LN319 cells. Preincubation of the cells with T4-[NPY(33-36)]4 shifted to the right the dose-response curves for intracellular mobilization of calcium induced by NPY at concentrations ranging from 0.1 nM to 10 microM. Finally, we assessed the competitive antagonistic properties of T4-[NPY(33-36)]4 at presynaptic peptidergic Y2 receptors modulating noradrenaline release. the compound T4-[NPY(33-36)]4 caused a marked shift to the right of the concentration-response curve of NPY 13-36, a Y2-selective fragment, yielding a pA2 value of 8.48. Thus, to our best knowledge, T4-[NPY(33-36)]4 represents the first potent and selective Y2 antagonist.