998 resultados para ARCHEAN CRUST
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A área da Bacia do Marajó apresenta feições geológicas e geomorfológicas devidas principamente à distensão Mesozóica e à neotectônica pós-miocênica. O evento de distensão, com fases do Cretáceo Inferior e Superior, originou quatro sub-bacias que contituem a Bacia do Marajó, com uma espessa seqüência clástica continental mostrando influência marinha. Falhas normais NW e NNW e direcionais NE e ENE controlaram a geometria da bacia. A distensão, relacionada com a abertura do Atlântico Equatorial, propagou-se continente adentro ao longo de zonas de fraqueza crustal dos cinturões orogênicos pré-cambrianos Tumucumaque, Amapá e Araguaia. O evento neotectônico é um regime transcorrente que desenvolveu bacias transtensivas preenchidas por sedimentos marinhos rasos (Formação Pirabas) e seqüências transicionais (Grupo Barreiras) do Terciário Superior, seguidos por depósitos fluviais e seqüências transicionais do Quaternário, derivadas dos rios Amazoans e Tocantins e do estuário do Marajó. A paisagem atual tem morfologia tipicamente estuarina. A morfologia costeira apresenta escarpas em seqüências transicionais do Terciário Superior, enquanto no interior dominam elevações sustentadas por crosta laterítica do Pleistoceno Médio, aparadas por superfície erosiva a 70 m. No leste da Ilha do Marajó são reconhecidas várias gerações de paleocanais com seqüências estuarinas associadas, enquanto no lado oeste predomina uma planície flúvio-marinha.
Resumo:
The Fortaleza de Minas Ni-Cu-PGE sulfide deposit is hosted by Archean komatiitic rocks of the Morro do Ferro greenstone belt, near the southwestern margin of the Sa (aFrancisco) over tildeo Francisco craton, Minas Gerais state, Brazil. The deposit contains 6 million tonnes of ore with an average grade of 2.2 wt% Ni, 0.4% Cu, 0.05% Co and 1.2 ppm PGE+Au, and comprises (i) a main orebody, which is metamorphosed, deformed and transposed along a regional shear zone, consisting mainly of disseminated, brecciated and stringer sulfide ores that are interpreted to be of early magmatic origin, and (ii) PGE-rich discordant veins that are hosted in N-S- and NE-SW-trending late faults that cross-cut the main orebody. The discordant PGE-rich ore (up to 4 ppm total PGE) is characterized by thin, discontinuous and irregular veins and lenses of massive sulfides hosted by serpentinite and talc schist, and is relatively undeformed if compared with the early types of ore. It is composed mainly of pyrrhotite, pentlandite, chalcopyrite, magnetite, carbonates, and amphiboles, with minor cobaltite-gersdorffite, sphalerite, ilmenite, and quartz, and rarely maucherite (Ni11Asg), tellurides and platinum-group minerals (PGM). Omeeite, irarsite, sperrylite, and Ni-bearing merenskyite are the main PGM, followed by minor amounts of testibiopalladite and an unknown phase containing Ru, Te, and As. The PGM occur either included in, or at the margins of, sulfides, sulfarsenides, silicates and oxides, or filling fractures in pyrrhotite, pentlandite, and chalcopyrite, suggesting that they started to precipitate with these minerals and continued to precipitate after the sulfides were formed. The mantle-normalized metal distribution of the two samples of discordant veins shows distinct patterns: one richer in Ni-Pd-Ir-Rh-Ru-Os and another with higher amounts of Cu-Pt-Bi. Both are strongly depleted in Cr if compared with the metamorphosed magmatic ore of this deposit, which follows the general Kambalda-type magmatic trend. on the basis of structural, mineralogical and geochemical evidence, we propose that the PGE-rich discordant ore may have formed by remobilization of metals from the deformed, metamorphosed magmatic orebody (which shows a depleted pattern in these elements) by reduced (pyrrhotite - pentlandite - pyrite are stable), neutral to alkaline and carbonic fluids (carbonate-stable). The PGE may have been transported as bisulfide complexes, and precipitated as tellurides (mainly Pd) and arsenides (Pt, Rh, Ru, Os, Ir) in the late N-S and NE-SW-trending faults owing to a decrease in the activity of S caused by the precipitation of sulfides in the veins.
Resumo:
A subduction complex composed of ocean floor material mixed with arc-derived metasediments crops out in the Elephant Island group and at Smith Island, South Shetland Islands, Antarctica, with metamorphic ages of 120-80 Ma and 58-47 Ma? respectively. Seven metamorphic zones (I-VII) mapped on Elephant Island delineate a gradual increase in metamorphic grade from the pumpellyite-actinolite facies, through the crossite-epidote blueschist facies, to the lower amphibolite facies. Geothermometry in garnet-amphibole and garnet-biotite pairs yields temperatures of about 350 degrees C in zone III to about 525 degrees C in zone VII. Pressures were estimated on the basis of Si content in white mica, Al2O3 content in alkali amphibole, Na-M4/Al-IV in sodic-calcic and calcic amphibole, Al-VI/Si in calcic amphibole, and jadeite content in clinopyroxene. Mean values vary from about 6-7.5 kbar in zone II to about 5 kbar in zone VII. Results from the other islands of the Elephant Island group are comparable to those from the main island; Smith Island yielded slightly higher pressures, up to 8 kbar, with temperatures estimated between 300 and 350 degrees C. Zoned minerals and other textural indications locally enable inference of P-T-t trajectories, all with a clockwise evolution. A reconstruction in space and time of these P-T-t paths allows an estimate of the thermal structure in the upper crust during the two ductile deformation phases (D-1 & D-2) that affected the area. This thermal structure is in good agreement with the one expected for a subduction zone. The arrival and collision of thickened oceanic crust may have caused the accretion and preservation of the subduction complex. In this model, D-1 represents the subduction movements expressed by the first vector of the clockwise P-T-t path, D-2 reflects the collision corresponding to the second vector with increasing temperature and decreasing pressure, and D-3 corresponds to isostatic uplift accompanied by erosion, under circumstances of decreasing temperature and pressure.
Resumo:
The different tectonic stages that occurred at the end of the Proterozoic and during the Phanerozoic have an important bearing on the tectonothermal history of the South American Platform and its consolidation. Geochronological data (U/Pb monazite, Ar-40/Ar-39 whole rock) and apatite fission-track analysis, from Precambrian rocks of the southeastern Brazilian coastline, permit the modeling of a long-term thermal history of the crust and constrain variable denudation rates.Using these data, a temperature-time diagram reflects a period of accelerated exhumation during the end of the Brasiliano Orogeny, followed by long stability and reactivation of the platform during the Rifting Phase of the South Atlantic Ocean.U/Pb zircon and monazite (blocking temperature of ca. 650degreesC) data from a series of igneous bodies suggest that a tangential and transpressional tectonic regime occurred between 625 and 610 Ma. During the following escape tectonics, between 610 and 590 Ma the exhumation process indicates cooling rates of ca. 12degreesC/Ma. Ar-40/Ar-39 biotite ages between 540 and 510 Ma (ca. 300degreesC) and a corrected fission-track age on apatites (100degreesC) of 480 Ma indicate an exhumation event related to block tectonics with huge vertical displacement along shear zones.A long stabilization phase, with low exhumation, and cooling rate around 0.25degreesC/Ma was recorded from the Cambro/Ordovician to the Mesozoic. At 65 Ma an acceleration of the exhumation through denudation and reworking of the South American surface with cooling rate of 1.5degreesC/Ma is observed.The uplift of the Mantiqueira and Serra do Mar mountain ranges along the southeast Brazilian coastline works as a climatic barrier provoking lateral erosional processes causing long-term scarp retreat, combined with intense, but progressive denudation towards the continent. A denudation of 2.5 to 4 km was calculated for such processes. This lateral retreat of escarpments and flexural response can provide important insights regarding marginal isostatic uplift and the evolution of offshore sedimentary basins of southeast Brazil.
Resumo:
Rapakivi granites and associated mafic and ultramafic rocks in the Rondonia Tin Province, southwestern Amazonian craton, Brazil were emplaced during six discrete episodes of magmatism between ca 1600 and 970 Ma. The seven rapakivi granite suites emplaced at this time were the Serra da Providencia Intrusive Suite (U-Pb ages between 1606 and 1532 Ma); Santo Antonio Intrusive Suite(U-Pb age 1406 Ma), Teotonio Intrusive Suite (U-Pb age 1387 Ma); Alto Candeias Intrusive Suite (U-Pb ages between 1346 and 1338 Ma); Sao Lourenco-Caripunas Intrusive Suite (U-Pb ages between 1314 and 1309 Ma); Santa Clara Intrusive Suite (U-Pb ages between 1082 and 1074 Ma); and Younger Granites of Rondonia (U-Pb ages between 998 and 974 Ma). The Serra da Providencia Intrusive Suite intruded the Paleoproterozoic (1.80 to 1.70 Ga) Rio Negro-Juruena crust whereas the other suites were emplaced into the 1.50 to 1.30 Ga Rondonia-San Ignacio crust. Their intrusion was contemporaneous with orogenic activity in other parts of the southwestern Amazonian craton, except for the oldest, Serra da Providencia Intrusive Suite. Orogenic events coeval with emplacement of the Serra da Providencia Intrusive Suite are not clearly recognized in the region. The Santo Antonio, Teotonio, Alto Candeias and Sao Lourenco-Caripunas Intrusive Suites are interpreted to represent extensional anorogenic magmatism associated with the terminal stages of the Rondonian-San Ignacio orogeny. At least the Sao Lourenco-Caripunas rapakivi granites and coeval intra-continental rift sedimentary rocks may, in contrast, represent the products of extensional tectonics and rifting preceding the Sunsas/Aguapei orogeny (1.25 to 1.0 Ga). The two youngest rapakivi suites, the Santa Clara Intrusive Suite and Younger Granites of Rondonia, seemingly represent inboard magmatism in the Rondonian-San Ignacio Province during a younger episode of reworking in the Rio Negro-Juruena Province during the waning stages of the collisional 1.1 to 1.0 Ga Sunsas/Aguapei orogeny. The six intra-plate rapakivi granite episodes in the southwestern part of the Amazonian craton form three broad periods of anorogenic magmatism that have age-correlative events composed of similar rocks and geologic environments in eastern Laurentia and Baltica, although the exact timing of magmatism appears slightly different. Recognition of lithologic and chronological correlations between various cratons provide important constraints to models explaining the interplay between rapakivi granite magmatism and deep crustal evolution of an early Mesoproterozoic supercontinent. They are, furthermore, important to plate tectonic models for the assembly, dispersal and reassembly of Amazonia, Laurentia and Baltica in the Mesoproterozoic and Neoproterozoic. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
On the basis of geologic, petrologic, and U-Pb geochronologic data the basement rocks in the east-central part of the Rondonia Tin Province (RTP, southwestern Amazonian craton) are grouped into five lithologic associations: (1) tonalitic gneiss (1.75 Ga); (2) enderbitic granulite (1.73 Ga); (3) paragneiss; (4) granitic and charnockitic augen gneisses (1.57-1.53 Ga); and (5) fine-grained granitic gneiss and charnockitic granulite (1.43-1.42 Ga). The first three are related to development of the Paleoproterozoic Rio Negro-Juruena Province and represent the oldest crust in the region. The tonalitic gneisses and enderbitic granulites show calc-alkaline affinities and Nd isotopic compositions (initial epsilon(Nd) = +0-1 to -1.5; T-DM of 2.2-2.1 Ga) that suggest a continental arc margin setting for the original magmas. The paragneisses yield T-DM values of 2.2-2.1 Ga suggesting that source material was primarily derived from the Ventuari-Tapajos and Rio Negro-Juruena crusts, but detrital zircon ages and an intrusive granitoid bracket deposition between 1.67 and 1.57 Ga. The granitic and charnockitic augen gneisses show predominantly A-type and within-plate granite affinities, but also some volcanic arc granite characteristics. The initial epsilon(Nd) values (+0.6 to +2.0) indicate mixing of magmas derived from depleted mantle and older crustal sources. These rocks are correlated to the 1.60-1.53 Ga Serra da Providencia intrusive suite that reflects inboard magmatism coeval with the Cachoeirinha orogen located to the southeast. The fine-grained granitic gneiss and charnockitic granulites represent the first record of widespread magmatism at 1.43-1.42 Ga in northern Rondonia. Their geochemical signatures and the slightly positive initial epsilon(Nd) values (+0.7 to +1.2) are very similar to those of the most evolved granites of the calc-alkaline Santa Helena batholith farther southeast. U-Pb monazite and Sm-Nd whole-rock-garnet ages demonstrate that a high-grade tectonometa-morphic episode occurred in this region at 1.33-1.30 Ga. This episode attained upper-amphibolite conditions and is interpreted as the peak of the Rondonian-San Ignacio orogeny. The U-Pb and Sm-Nd data presented here and data published on rapakivi granites elsewhere indicate that the east-central part of the RTP is a poly-orogenic region characterized by successive episodes of magmatism, metamorphism, and deformation between 1.75 and 0.97 Ga. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Geochemical data for granulite terrain are presented from the northernmost portion of the Guaxupe Massif, at Mantiqueira Province, SE Brazil. Several types of granulites are recognized in the area: basic, intermediate and acid granulite. Major and trace elements (including REE) point to only one ma,oma source for these granulites generated at different times. Geochemical data point to plagioclase and apatite fractionation as responsable in the REE behaviour in intermediate and more basic rocks. Overall composition of the Guaxupe Granulites is similar to average composition of the lower crust.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
It is well known that radiation causes mutation, and that mutations are generally deleterious. They can lead to disease, malformation and death. It is further known that we live in a radioactive world. The air, the soil, the water, the food, all are somewhat radioactive. Natural radiation is not uniformly distributed throughout the earth's crust. There are some areas, especially in Brazil and India, where the levels of background radiation are several times higher than generally obtains. We have undertaken a specially prepared house-to-house genetic-epidemiologic, retrospective survey in a large Brazilian area with levels of natural radiation ranging from 7 (normal) to 133 (high) micro-roentgens per hour. In all, 24 different localities were surveyed during a period of 10 months by a trained team of nurses and social assistants. Our total sample consists of more than 8,000 couples who have had almost 44,000 pregnancy terminations. Our results do not disprove that natural radiation is one of the causes of socalled spontaneous mutations. They only show that, under the conditions of this study, no detectable effect on abortion was found. Our results also attest to the importance of extraneous variables in the analysis of morbidity and mortality data.
Resumo:
The Araguaia-Tocantins geosuture, which separates the Araguaia Fold Belt (AFB) from the Archean Amazonian Craton, was active in the late Middle Proterozoic. The Baixo Araguaia Supergroup was deposited, consisting of the Estrondo Group (lower quartzites with intercalated schists), Xambioá Formation (schists), and Canto da Vazante Formation (upper feldspathic schists); and the Tocantins Group consisting of the Couto Magalhaës Formation (phyllites, quartzites, slates, limestones, and metacherts) and Pequizeiro Formation (upper chlorite schists); and associated mafic-ultramafic bodies. The deformational history includes four regional phases of deformation within this supracrustal sequence: recumbent folds with vergence to the west; refolding with a N-S trend; an intense crenulation episode; and late thrusting from east to west. Metamorphism is of intermediate or intermediate-high pressure type with garnet, biotite, chlorite, and sericite isograds succeeded by a slightly or non-metamorphosed zone, from east to west. Rocks surrounding sparse gneissic-cored domes contain isograds of staurolite, kyanite, and fibrolite. These isograds are believed to be associated with the 1100 Ma Uruaçuano event. The Brasiliano Orogeny strongly affected the AFB with displacements due to transcurrent reactivation of great and old faults of the basement, slight folding in the supracrustal sequence, intrusion of small granite bodies, and development of domes with associated normal faults. The area underlain by the Estrondo Group was uplifted at this time, causing the deposition of the Rio das Barreiras polymictic conglomerate of the central area. K-Ar and Rb-Sr analyses date this thermo-tectonic event at 550 ± 100 Ma. The Archean basement is exposed in the cores of domes as a granite-gneiss association, the Colméia complex, which shows thermo-tectonic features that may be interpreted as polycyclic imprints (Jequié, Transamazonian?, Uruaçuano, and Brasiliano Events). © 1989.
Resumo:
The Natividade Group is a metasedimentary sequence discontinuously exposed in the southeastern region of the Tocantins State. It rests unconformably on the Archean gneissic-granitoid complex and its associated supracrustals, as well as on granite intrusives of the Lajeado Suite (1.870 Ma). It is unconformably covered by the Monte do Carmo Formation and the Serra Grande Formation. The sequence is preserved on tilted blocks and grabens. The western portion is constituted of only detritic metasediments. The intermediate outcrops presents detritic and some carbonatic metasediments. A carbonatic sequence, with some detritic levels, is recognized at the eastern area. The sections of these different domains are interpreted as constituted of fining-up sequences due to three transgressive episodes into an ensialic paleobasin, with uplifted border to the western side and a carbonate platform to the east, which represents the western extension of the Mambui Group. The Natividade Group presents folds with variable styles and no defined vergence, which are synchronous to the regional metamorphism (lower to upper greenschist facies). Two groups of faults cut the sequence. -from English summary
Resumo:
In the Cuiabá region-State of Mato Grosso, Central Brazil-primary gold mineralization is hosted by two generations of quartz veins in Precambrian metamorphic terrains of the Cuiabá Group. Gold is mined from the veins and mainly from the eluvial horizons that cover the deeply altered basement. In the lodes gold occurs as small particles (less than 1 mm) associated with pyrite and contains up to 5% Ag. Larger particles and nuggets of almost pure gold are found in the iron duricrust which caps the upper levels of the weathering profile. It is difficult to determine the average grade of this kind of deposit but some prospects in the Cuiabá region produce up to 2 g gold per ton of ore. Lateritization is responsible for both the formation of the iron crust and the concentration of gold within the regolith. Under a tropical climate, the supergene alteration of phyllites of the Cuiabá Group has led to the formation of a weathering profile consisting typically of saprolite, mottled clay zone and duricrust, from bottom to top. The duricrust is directly derived form the in situ weathering of phyllites. Geochemical balance calculations indicate that in the transition from the saprolite to the duricrust lateritization has promoted a progressive loss of Si, Al and K, and more than 500% of absolute Fe enrichment. Gold underwent a supergene evolution related to the development of the weathering profile. In the saprolite and mottled clay zone, associated with quartz and oxidized sulfides, gold dissolves as demonstrated by corrosion features at the surface of the particles. The formation of secondary gold in the duricrust is indicated by the larger size of the nuggets, their higher fineness and the close relationship between gold and the neoformed iron oxy-hydroxides. © 1991.
Resumo:
The Precambrian Rio Paraíba do Sul Shear Belt comprises a 200-km-wide anastomosing network of NE-SW trending ductile shear zones extending over 1000 km of the southeastern coast of Brazil. Granulitic, gneissic-migmatitic, and granitoid terrains as well as low- to medium-grade metavolcanosedimentary sequences are included within it. These rocks were affected by strong contractional, tangential tectonics, due to west-northwestward oblique convergence of continental blocks. Subsequent transpressional tectonics accomodated large dextral, orogen-parallel movements and shortening. The plutonic Socorro Complex is one of many deformed granites with a foliation subparallel to that of the shear belt and exposes crosscutting relationships between its tectonic, magmatic, and metamorphic structures. These relationships point to a continuous magmatic evolution related to regional thrusts and strike slip, ductile shear zones. The tectonic and magmatic structural features of the Serra do Lopo Granite provide a model of emplacement by sheeting along shear zones during coeval strike-slip and cross shortening of country rocks. Geochronological data indicate that the main igneous activity of Socorro Complex spanned at least 55 million years, from the late stage of the northwestward ductile thrusting (650 Ma), through right-lateral strike slip (595 Ma) deformation. The country rocks yield discordant age data, which reflect a strong imprint of the Transamazonian tectono-metamorphic event (1.9 to 2.0 Ma). We propose a model for the origin of calcalkaline granites of the Ribeira Belt by partial melting of the lower crust with small contributions of the lithospheric mantle during transpressional thickening of plate margins, which were bounded by deep shear zones. The transpressional regime also seems to have focused granite migration from deeper into higher crustal levels along these shear zones.