933 resultados para AQP-1 and AQP-9


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Calstabins 1 and 2 bind to Ryanodine receptors regulating muscle excitation-contraction coupling. Mutations in Ryanodine receptors affecting their interaction with calstabins lead to different cardiac pathologies. Animal studies suggest the involvement of calstabins with dilated cardiomyopathy. Results We tested the hypothesis that calstabins mutations may cause dilated cardiomyopathy in humans screening 186 patients with idiopathic dilated cardiomyopathy for genetic alterations in calstabins 1 and 2 genes (FKBP12 and FKBP12.6). No missense variant was found. Five no-coding variations were found but not related to the disease. Conclusions These data corroborate other studies suggesting that mutations in FKBP12 and FKBP12.6 genes are not commonly related to cardiac diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activation of heme oxygenase-1 (HO-1) appears to be an endogenous defensive mechanism used by cells to reduce inflammation and tissue damage in a number of injury models. HO-1, a stress-responsive enzyme that catabolizes heme into carbon monoxide (CO), biliverdin and iron, has previously been shown to protect grafts from ischemia/reperfusion and rejection. In addition, the products of the HO-catalyzed reaction, particularly CO and biliverdin/bilirubin, have been shown to exert protective effects in the liver against a number of stimuli, as in chronic hepatitis C and in transplanted liver grafts. Furthermore, the induction of HO-1 expression can protect the liver against damage caused by a number of chemical compounds. More specifically, the CO derived from HO-1-mediated heme catabolism has been shown to be involved in the regulation of inflammation; furthermore, administration of low concentrations of exogenous CO has a protective effect against inflammation. Both murine and human HO-1 deficiencies have systemic manifestations associated with iron metabolism, such as hepatic overload (with signs of a chronic hepatitis) and iron deficiency anemia (with paradoxical increased levels of ferritin). Hypoxia induces HO-1 expression in multiple rodent, bovine and monkey cell lines, but interestingly, hypoxia represses expression of the human HO-1 gene in a variety of human cell types (endothelial cells, epithelial cells, T cells). These data suggest that HO-1 and CO are promising novel therapeutic molecules for patients with inflammatory diseases. In this review, we present what is currently known regarding the role of HO-1 in liver injuries and in particular, we focus on the implications of targeted induction of HO-1 as a potential therapeutic strategy to protect the liver against chemically induced injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The submitted work concentrated on the study of mRNA expression of two distinct GABA transporters, GAT-1 and GAT-3, in the rat brain. For the detection and quantification of the chosen mRNAs, appropriate methods had to be established. Two methods, ribonuclease protection assay (RPA) and competitive RT-PCR were emloyed in the present study. Competitive RT-PCR worked out to be 20 times more sensitive as RPA. Unlike the sensitivity, the fidelity of both techniques was comparable with respect to their intra- and inter-assay variability.The basal mRNA levels of GAT-1 and GAT-3 were measured in various brain regions. Messenger RNAs for both transporters were detected in all tested brain regions. Depending on the region, the observed mRNA level for GAT-1 was 100-300 higher than for GAT-3. The GAT-1 mRNA levels were similar in all tested regions. The distribution of GAT-3 mRNA seemed to be more region specific. The strongest GAT-3 mRNA expression was detected in striatum, medulla oblongata and thalamus. The lowest levels of GAT-3 were in cortex frontalis and cerebellum.Furthermore, the mRNA expression for GAT-1 and GAT-3 was analysed under altered physiological conditions; in kindling model of epilepsy and also after long-term treatment drugs modulating GABAergic transmission. In kindling model of epilepsy, altered GABA transporter function was hypothesised by During and coworkers (During et al., 1995) after observed decrease in binding of nipecotic acid, a GAT ligand, in hippocampus of kindled animals. In the present work, the mRNA levels were measured in hippocampus and whole brain samples. Neither GAT-1 nor GAT-3 showed altered transcription in any tested region of kindled animals compared to controls. This leads to conclusion that an altered functionality of GABA transporters is involved in epilepsy rather than a change in their expression.The levels of GAT-1 and GAT-3 mRNAs were also measured in the brain of rats chronically treated with diazepam or zolpidem, GABAA receptor agonists. Prior to the molecular biology tests, behavioural analysis was carried out with chronically and acutely treated animals. In two tests, open field and elevated plus-maze, the basal activity exploration and anxiety-like behaviour were analysed. Zolpidem treatment increased exploratory activity. There were observed no differencies between chronically and acutely treated animals. Diazepam increased exploratory activity and decresed anxiety-like behaviour when applied acutely. This effect disappeard after chronic administration of diazepam. The loss of effect suggested a development of tolerance to effects of diazepam following long-term administration. Double treatment, acute injection of diazepam after chronic diazepam treatment, confirmed development of a tolerance to effects of diazepam. Also, the mRNAs for GAT-1 and GAT-3 were analysed in cortex frontalis, hippocampus, cerebellum and whole brain samples of chronically treated animals. The mRNA levels for any of tested GABA transporters did not show significant changes in any of tested region neither after diazepam nor zolpidem treatment. Therefore, changes in GAT-1 and GAT-3 transcription are probably not involved in adaptation of GABAergic system to long-term benzodiazepine administration and so in development of tolerance to benzodiazepines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer is a multi-step process in which both the activation of oncogenes and the inactivation of tumor suppressor genes alter the normal cellular programs to a state of proliferation and growth. The regulation of a number of tumor suppressor genes and the mechanism underlying the tumor suppression have been intensively studied. Hugl-1 and Hugl-2, the human homologues of Drosophila lgl are shown to be down-regulated in a variety of cancers including breast, colon, lung and melanoma, but the mechanism responsible for loss of expression is not yet known. The regulation of gene expression is influenced by factors inducing or repressing transcription. The present study was focused on the identification and characterization of the active promoters of Hugl-1 and Hugl-2. Further, the regulation of the promoter and functional consequences of this regulation by specific transcription factors was analyzed. Experiments to delineate the function of the mouse homologue of Hugl-2, mgl2 using transgenic mice model were performed. This study shows that the active promoter for both Hugl-1 and Hugl-2 is located 1000bp upstream of transcription start sites. The study also provides first insight into the regulation of Hugl-2 by an important EMT transcriptional regulator, Snail. Direct binding of Snail to four E-boxes present in Hugl-2 promoter region results in repression of Hugl-2 expression. Hugl-1 and Hugl-2 plays pivotal role in establishment and maintenance of cell polarity in a diversity of cell types and organisms. Loss of epithelial cell polarity is a prerequisite for cancer progression and metastasis and is an important step in inducing EMT in cells. Regulation of Hugl-2 by Snail suggests one of the initial events towards loss of epithelial cell polarity during Snail-mediated EMT. Another important finding of this study is the induction of Hugl-2 expression can reverse the Snail-driven EMT. Inducing Hugl-2 in Snail expressing cells results in the re-expression of epithelial markers E-cadherin and Cytokeratin-18. Further, Hugl-2 also reduces the rate of tumor growth, cell migration and induces the epithelial phenotype in 3D culture model in cells expressing Snail. Studies to gain insight into the signaling pathways involved in reversing Snail-mediated EMT revealed that induction of Hugl-2 expression interferes with the activation of extracellular receptor kinase, Erk. Functional aspects of mammalian lgl in vivo was investigated by establishing mgl2 conditional knockout mice. Though disruption of mgl2 gene in hepatic tissues did not alter the growth and development, ubiquitous disruption of mgl2 gene causes embryonic lethality which is evident by the fact that no mgl2-/- mice were born.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ubiquitously expressed mammalian Na(+)/H(+) exchanger 1 (NHE1) controls cell volume and pH but is also critically involved in complex biological processes like cell adhesion, cell migration, cell proliferation, and mechanosensation. Pathways controlling NHE1 turnover at the plasma membrane, however, are currently unclear. Here, we demonstrate that NHE1 undergoes ubiquitylation at the plasma membrane by a process that is unprecedented for a mammalian ion transport protein. This process requires the adapter protein ?-arrestin-1 that interacts with both the E3 ubiquitin ligase Nedd4-1 and the NHE1 C terminus. Truncation of NHE1 C terminus to amino acid 550 abolishes binding to ?-arrestin-1 and NHE1 ubiquitylation. Overexpression of ?-arrestin-1 or of wild type but not ligase-dead Nedd4-1 increases NHE1 ubiquitylation. siRNA-mediated knock-down of Nedd4-1 or ?-arrestin-1 reduces NHE1 ubiquitylation and endocytosis leading to increased NHE1 surface levels. Fibroblasts derived from ?-arrestin-1 and Nedd4-1 knock-out mice show loss of NHE1 ubiquitylation, increased plasmalemmal NHE1 levels and greatly enhanced NHE1 transport compared with wild-type fibroblasts. These findings reveal Nedd4-1 and ?-arrestin-1 as key regulators of NHE1 ubiquitylation, endocytosis, and function. Our data suggest a broader role for ?-arrestins in the regulation of membrane ion transport proteins than currently known.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Matrix metalloproteinases (MMP), particularly MMP-2 and MMP-9, participate in tumour progression and metastasis in various cancers. Their significance in urothelial cancer of the bladder (UCB) is unclear. Expression analysis of MMP-2 and MMP-9 in tissue microarrays (TMA) constructed of corresponding samples from histopathological normal urothelium, tumour centre and invasion front of primary tumours and lymph-node (LN) metastases might help to elucidate their relevance in UCB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor ? (PPAR?) is a transcription factor that promotes differentiation and cell survival in the stomach. PPAR? upregulates and interacts with caveolin-1 (Cav1), a scaffold protein of Ras/mitogen-activated protein kinases (MAPKs). The cytoplasmic-to-nuclear localization of PPAR? is altered in gastric cancer (GC) patients, suggesting a so-far-unknown role for Cav1 in spatial regulation of PPAR? signaling. We show here that loss of Cav1 accelerated proliferation of normal stomach and GC cells in vitro and in vivo. Downregulation of Cav1 increased Ras/MAPK-dependent phosphorylation of serine 84 in PPAR? and enhanced nuclear translocation and ligand-independent transcription of PPAR? target genes. In contrast, Cav1 overexpression sequestered PPAR? in the cytosol through interaction of the Cav1 scaffolding domain (CSD) with a conserved hydrophobic motif in helix 7 of PPAR?'s ligand-binding domain. Cav1 cooperated with the endogenous Ras/MAPK inhibitor docking protein 1 (Dok1) to promote the ligand-dependent transcriptional activity of PPAR? and to inhibit cell proliferation. Ligand-activated PPAR? also reduced tumor growth and upregulated the Ras/MAPK inhibitors Cav1 and Dok1 in a murine model of GC. These results suggest a novel mechanism of PPAR? regulation by which Ras/MAPK inhibitors act as scaffold proteins that sequester and sensitize PPAR? to ligands, limiting proliferation of gastric epithelial cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The objective of this study was to link expression patterns of B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) and p16 to patient outcome (recurrence and survival) in a cohort of 252 patients with oral and oropharyngeal squamous cell cancer (OSCC). METHODS: Expression levels of Bmi-1 and p16 in samples from 252 patients with OSCC were evaluated immunohistochemically using the tissue microarray method. Staining intensity was determined by calculating an intensity reactivity score (IRS). Staining intensity and the localization of expression within tumor cells (nuclear or cytoplasmic) were correlated with overall, disease-specific, and recurrence-free survival. RESULTS: The majority of cancers were localized in the oropharynx (61.1%). In univariate analysis, patients who had OSCC and strong Bmi-1 expression (IRS >10) had worse outcomes compared with patients who had low and moderate Bmi-1 expression (P = .008; hazard ratio [HR], 1.82; 95% confidence interval [CI], 1.167-2.838); this correlation was also observed for atypical cytoplasmic Bmi-1 expression (P = .001; HR, 2.164; 95% CI, 1.389-3.371) and for negative p16 expression (P < .001; HR, 0.292; 95% CI, 0.178-0.477). The combination of both markers, as anticipated, had an even stronger correlation with overall survival (P < .001; HR, 8.485; 95% CI, 4.237-16.994). Multivariate analysis demonstrated significant results for patients with oropharyngeal cancers, but not for patients with oral cavity tumors: Tumor classification (P = .011; HR, 1.838; 95%CI, 1.146-2.947) and the combined marker expression patterns (P < .001; HR, 6.254; 95% CI, 2.869-13.635) were correlated with overall survival, disease-specific survival (tumor classification: P = .002; HR, 2.807; 95% CI, 1.477-5.334; combined markers: P = .002; HR, 5.386; 95% CI, 1.850-15.679), and the combined markers also were correlated with recurrence-free survival (P = .001; HR, 8.943; 95% CI, 2.562-31.220). CONCLUSIONS: Cytoplasmic Bmi-1 expression, an absence of p16 expression, and especially the combination of those 2 predictive markers were correlated negatively with disease-specific and recurrence-free survival in patients with oropharyngeal cancer. Therefore, the current results indicate that these may be applicable as predictive markers in combination with other factors to select patients for more aggressive treatment and follow-up. Cancer 2011;. © 2011 American Cancer Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ABSORB cohort A trial using the bioresorbable everolimus-eluting scaffold (BVS revision 1.0, Abbott Vascular) demonstrated a slightly higher acute recoil with BVS than with metallic stents. To reinforce the mechanical strength of the scaffold, the new BVS scaffold (revision 1.1) with modified strut design was developed and tested in the ABSORB cohort B trial. This study sought to evaluate and compare the in vivo acute scaffold recoil of the BVS revision 1.0 in ABSORB cohort A and the BVS revision 1.1 in ABSORB cohort B with the historical recoil of the XIENCE V® everolimus-eluting metal stent (EES, SPIRIT I and II).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies have suggested that the scavenger receptor MARCO (macrophage receptor with collagenous structure) mediates activation of the immune response in bacterial infection of the central nervous system (CNS). The chemotactic G-protein-coupled receptor (GPCR) formyl-peptide-receptor like-1 (FPRL1) plays an essential role in the inflammatory responses of host defence mechanisms and neurodegenerative disorders such as Alzheimer's disease (AD). Expression of the antimicrobial peptide cathelicidin CRAMP/LL-37 is up-regulated in bacterial meningitis, but the mechanisms underlying CRAMP expression are far from clear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing relevance of the cancer stem cell (CSC) hypothesis and the impact of CSC-associated markers in the carcinogenesis of solid tumours may provide potential prognostic implications in lung cancer. We propose that a collective genetic analysis of established CSC-related markers will generate data to better define the role of putative CSCs in lung adenocarcinoma (LAC).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose Orthognathic surgery has the objective of altering facial balance to achieve esthetic results in patients who have severe disharmony of the jaws. The purpose was to quantify the soft tissue changes after orthognathic surgery, as well as to assess the differences in 3D soft tissue changes in the middle and lower third of the face between the 1- and 2-jaw surgery groups, in mandibular prognathism patients. Materials and Methods We assessed soft tissue changes of patients who have been diagnosed with mandibular prognathism and received either isolated mandibular surgery or bimaxillary surgery. The quantitative surface displacement was assessed by superimposing preoperative and postoperative volumetric images. An observer measured a surface-distance value that is shown as a contour line. Differences between the groups were determined by the Mann-Whitney U test. The Spearman correlation coefficient was used to evaluate a potential correlation between patients' surgical and cephalometric variables and soft tissue changes after orthognathic surgery in each group. Results There were significant differences in the middle third of the face between the 1- and 2-jaw surgery groups. Soft tissues in the lower third of the face changed in both surgery groups, but not significantly. The correlation patterns were more evident in the lower third of the face. Conclusion The overall soft tissue changes of the midfacial area were more evident in the 2-jaw surgery group. In 2-jaw surgery, significant changes would be expected in the midfacial area, but caution should be exercised in patients who have a wide alar base.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Porcine IGF2 and the H19 genes are imprinted. The IGF2 is paternally expressed, while the H19 gene is maternally expressed. Extensive studies in mice established a boundary model indicating that the H19 differentially methylated domain (DMD) controls, upon binding with the CTCF protein, reciprocal imprinting of the IGF2 and the H19 genes. IGF2 transcription is tissue and development specific involving the use of 4 promoters. In the liver of adult Large White boars IGF2 is expressed from both parental alleles, whereas in skeletal muscle and kidney tissues we observed variable relaxation of IGF2 imprinting. We hypothesized that IGF2 expression from both paternal alleles and relaxation of IGF2 imprinting is reflected in differences in DNA methylation patterns at the H19 DMD and IGF2 differentially methylated regions 1 and 2 (DMR1 and DMR2). RESULTS: Bisulfite sequencing analysis did not show any differences in DNA methylation at the three porcine CTCF binding sites in the H19 DMD between liver, muscle and kidney tissues of adult pigs. A DNA methylation analysis using methyl-sensitive restriction endonuclease SacII and 'hot-stop' PCR gave consistent results with those from the bisulfite sequencing analysis. We found that porcine H19 DMD is distinctly differentially methylated, at least for the region formally confirmed by two SNPs, in liver, skeletal muscle and kidney of foetal, newborn and adult pigs, independent of the combined imprinting status of all IGF2 expressed transcripts. DNA methylation at CpG sites in DMR1 of foetal liver was significantly lower than in the adult liver due to the presence of hypomethylated molecules. An allele specific analysis was performed for IGF2 DMR2 using a SNP in the IGF2 3'-UTR. The maternal IGF2 DMR2 of foetal and newborn liver revealed a higher DNA methylation content compared to the respective paternal allele. CONCLUSIONS: Our results indicate that the IGF2 imprinting status is transcript-specific. Biallelic IGF2 expression in adult porcine liver and relaxation of IGF2 imprinting in porcine muscle were a common feature. These results were consistent with the IGF2 promoter P1 usage in adult liver and IGF2 promoter P2, P3 and P4 usages in muscle. The results showed further that bialellic IGF2 expression in liver and relaxation of imprinting in muscle and kidney were not associated with DNA methylation variation at and around at least one CTCF binding site in H19 DMD. The imprinting status in adult liver, muscle and kidney tissues were also not reflected in the methylation patterns of IGF2 DMRs 1 and 2.