949 resultados para ANPSP control model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper investigates a detailed Active Shock Control Bump Design Optimisation on a Natural Laminar Flow (NLF) aerofoil; RAE 5243 to reduce cruise drag at transonic flow conditions using Evolutionary Algorithms (EAs) coupled to a robust design approach. For the uncertainty design parameters, the positions of boundary layer transition (xtr) and the coefficient of lift (Cl) are considered (250 stochastic samples in total). In this paper, two robust design methods are considered; the first approach uses a standard robust design method, which evaluates one design model at 250 stochastic conditions for uncertainty. The second approach is the combination of a standard robust design method and the concept of hierarchical (multi-population) sampling (250, 50, 15) for uncertainty. Numerical results show that the evolutionary optimization method coupled to uncertainty design techniques produces useful and reliable Pareto optimal SCB shapes which have low sensitivity and high aerodynamic performance while having significant total drag reduction. In addition,it also shows the benefit of using hierarchical robust method for detailed uncertainty design optimization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Airports represent the epitome of complex systems with multiple stakeholders, multiple jurisdictions and complex interactions between many actors. The large number of existing models that capture different aspects of the airport are a testament to this. However, these existing models do not consider in a systematic sense modelling requirements nor how stakeholders such as airport operators or airlines would make use of these models. This can detrimentally impact on the verification and validation of models and makes the development of extensible and reusable modelling tools difficult. This paper develops from the Concept of Operations (CONOPS) framework a methodology to help structure the review and development of modelling capabilities and usage scenarios. The method is applied to the review of existing airport terminal passenger models. It is found that existing models can be broadly categorised according to four usage scenarios: capacity planning, operational planning and design, security policy and planning, and airport performance review. The models, the performance metrics that they evaluate and their usage scenarios are discussed. It is found that capacity and operational planning models predominantly focus on performance metrics such as waiting time, service time and congestion whereas performance review models attempt to link those to passenger satisfaction outcomes. Security policy models on the other hand focus on probabilistic risk assessment. However, there is an emerging focus on the need to be able to capture trade-offs between multiple criteria such as security and processing time. Based on the CONOPS framework and literature findings, guidance is provided for the development of future airport terminal models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the further noise reduction in the future, the traffic management which controls traffic flow and physical distribution is important. To conduct the measure by the traffic management effectively, it is necessary to apply the model for predicting the traffic flow in the citywide road network. For this purpose, the existing model named AVENUE was used as a macro-traffic flow prediction model. The traffic flow model was integrated with the road vehicles' sound power model, and the new road traffic noise prediction model was established. By using this prediction model, the noise map of entire city can be made. In this study, first, the change of traffic flow on the road network after the establishment of new roads was estimated, and the change of the road traffic noise caused by the new roads was predicted. As a result, it has been found that this prediction model has the ability to estimate the change of noise map by the traffic management. In addition, the macro-traffic flow model and our conventional micro-traffic flow model were combined, and the coverage of the noise prediction model was expanded.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a behavioral car-following model based on empirical trajectory data that is able to reproduce the spontaneous formation and ensuing propagation of stop-and-go waves in congested traffic. By analyzing individual drivers’ car-following behavior throughout oscillation cycles it is found that this behavior is consistent across drivers and can be captured by a simple model. The statistical analysis of the model’s parameters reveals that there is a strong correlation between driver behavior before and during the oscillation, and that this correlation should not be ignored if one is interested in microscopic output. If macroscopic outputs are of interest, simulation results indicate that an existing model with fewer parameters can be used instead. This is shown for traffic oscillations caused by rubbernecking as observed in the US 101 NGSIM dataset. The same experiment is used to establish the relationship between rubbernecking behavior and the period of oscillations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Despite the increasing clinical problems with metaphyseal fractures, most experimental studies investigate the healing of diaphyseal fractures. Although the mouse would be the preferable species to study the molecular and genetic aspects of metaphyseal fracture healing, a murine model does not exist yet. Using a special locking plate system, we herein introduce a new model, which allows the analysis of metaphyseal bone healing in mice. Methods: In 24 CD-1 mice the distal metaphysis of the femur was osteotomized. After stabilization with the locking plate, bone repair was analyzed radiologically, biomechanically, and histologically after 2 (n = 12) and 5 wk (n = 12). Additionally, the stiffness of the bone-implant construct was tested biomechanically ex vivo. Results: The torsional stiffness of the bone-implant construct was low compared with nonfractured control femora (0.23 ± 0.1 Nmm/°versus 1.78 ± 0.15 Nmm/°, P < 0.05). The cause of failure was a pullout of the distal screw. At 2 wk after stabilization, radiological analysis showed that most bones were partly bridged. At 5 wk, all bones showed radiological union. Accordingly, biomechanical analyses revealed a significantly higher torsional stiffness after 5 wk compared with that after 2 wk. Successful healing was indicated by a torsional stiffness of 90% of the contralateral control femora. Histological analyses showed new woven bone bridging the osteotomy without external callus formation and in absence of any cartilaginous tissue, indicating intramembranous healing. Conclusion: With the model introduced herein we report, for the first time, successful metaphyseal bone repair in mice. The model may be used to obtain deeper insights into the molecular mechanisms of metaphyseal fracture healing. © 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prevention and safety promotion programmes. Traditionally, in-depth investigations of crash risks are conducted using exposure controlled study or case-control methodology. However, these studies need either observational data for control cases or exogenous exposure data like vehicle-kilometres travel, entry flow or product of conflicting flow for a particular traffic location, or a traffic site. These data are not readily available and often require extensive data collection effort on a system-wide basis. Aim: The objective of this research is to propose an alternative methodology to investigate crash risks of a road user group in different circumstances using readily available traffic police crash data. Methods: This study employs a combination of a log-linear model and the quasi-induced exposure technique to estimate crash risks of a road user group. While the log-linear model reveals the significant interactions and thus the prevalence of crashes of a road user group under various sets of traffic, environmental and roadway factors, the quasi-induced exposure technique estimates relative exposure of that road user in the same set of explanatory variables. Therefore, the combination of these two techniques provides relative measures of crash risks under various influences of roadway, environmental and traffic conditions. The proposed methodology has been illustrated using Brisbane motorcycle crash data of five years. Results: Interpretations of results on different combination of interactive factors show that the poor conspicuity of motorcycles is a predominant cause of motorcycle crashes. Inability of other drivers to correctly judge the speed and distance of an oncoming motorcyclist is also evident in right-of-way violation motorcycle crashes at intersections. Discussion and Conclusions: The combination of a log-linear model and the induced exposure technique is a promising methodology and can be applied to better estimate crash risks of other road users. This study also highlights the importance of considering interaction effects to better understand hazardous situations. A further study on the comparison between the proposed methodology and case-control method would be useful.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Young novice drivers constitute a major public health concern due to the number of crashes in which they are involved, and the resultant injuries and fatalities. Previous research suggests psychological traits (reward sensitivity, sensation seeking propensity), and psychological states (anxiety, depression) influence their risky behaviour. The relationships between gender, anxiety, depression, reward sensitivity, sensation seeking propensity and risky driving are explored. Participants (390 intermediate drivers, 17-25 years) completed two online surveys at a six month interval. Surveys comprised sociodemographics, Brief Sensation Seeking Scale, Kessler’s Psychological Distress Scale, an abridged Sensitivity to Reward Questionnaire, and risky driving behaviour was measured by the Behaviour of Young Novice Drivers Scale. Structural equation modelling revealed anxiety, reward sensitivity and sensation seeking propensity predicted risky driving. Gender was a moderator, with only reward sensitivity predicting risky driving for males. Future interventions which consider the role of rewards, sensation seeking, and mental health may contribute to improved road safety for younger and older road users alike.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An enhanced mill extraction model has been developed to calculate mill performance parameters and to predict the extraction performance of a milling unit. The model takes into account the fibre suspended in juice streams and calculates filling ratio, reabsorption factor, imbibition coefficient, and separation efficiency using more complete definitions than those used in previous extraction models. A mass balance model is used to determine the fibre, brix and moisture mass flows between milling units so that a complete milling train, including the return stream from the juice screen, is modelled. Model solutions are presented to determine the effect of different levels of fibre in juice and efficiency of fibre separation in the juice screen on brix extraction. The model provides more accurate results than earlier models leading to better understanding and improvement of the milling process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Establishing a persistent presence in the ocean with an Autonomous Underwater Vehicle capable of observing temporal variability of large-scale ocean processes requires a unique sensor platform. In this paper, we examine the utility of Lagrangian profiling floats for such extended deployments. We propose a strategy that utilizes ocean model predictions to facilitate a basic level of autonomy to achieve general control of this minimally-actuated underwater vehicle. We extend experimentally validated techniques for utilising ocean current models to control under-actuated autonomous underwater vehicles by presenting this investigation into the application of these methods on profiling floats. With the appropriate vertical actuation, and utilising spatiotemporal variations in water speed and direction, we show that broad controllability results can be met. First, we apply an A* planner to a local controllability map generated from predictions of ocean currents. This computes a path between start and goal waypoints that has the highest likelihood of successful execution over a given duration. The computed depth plan is generated with a model predictive controller, and selects the depths for the vehicle so that ambient currents guide it toward the goal. Mission constraints are included to simulate and motivate a practical data collection mission. Results are presented in simulation for a mission off the coast of Los Angeles, CA USA, that show surprising results in the ability of a drifting vehicle to maintain a prescribed course and reach a desired location.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid system representations have been exploited in a number of challenging modelling situations, including situations where the original nonlinear dynamics are too complex (or too imprecisely known) to be directly filtered. Unfortunately, the question of how to best design suitable hybrid system models has not yet been fully addressed, particularly in the situations involving model uncertainty. This paper proposes a novel joint state-measurement relative entropy rate based approach for design of hybrid system filters in the presence of (parameterised) model uncertainty. We also present a design approach suitable for suboptimal hybrid system filters. The benefits of our proposed approaches are illustrated through design examples and simulation studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background to the Problem: Improving nurses' self-efficacy and job satisfaction may improve the quality of nursing care to patients. Moreover, to work effectively and consistently with professional nursing standards, nurses have to believe they are able to make decisions about their practice. In order to identify what strategies and professional development programmes should be developed and implemented for registered nurses in the Australian context, a comprehensive profile of registered nurses and factors that affect nursing care in Australia needs to be available. However, at present, there is limited information available on a) the perceived caring efficacy and job satisfaction of registered nurses in Australia, and b) the relationships between the demographic variables general self-efficacy, work locus of control, coping styles, the professional nursing practice environment and caring efficacy and job satisfaction of registered nurses in Australia. This is the first study to 1) investigate relationships between caring efficacy and job satisfaction with factors such as general self-efficacy, locus of control and coping, 2) the nursing practice environment in the Australian context and 3) conceptualise a model of caring efficacy and job satisfaction in the Australian context. Research Design and Methods: This study used a two-phase cross-sectional survey design. A pilot study was conducted in order to determine the validity and reliability of the survey instruments and to assess the effectiveness of the participant recruitment process. The second study of the research involved investigating the relationships between the socio-demographic, dependent and independent variables. Socio-demographic variables included age, gender, level of education, years of experience, years in current job, employment status, geographical location, specialty area, health sector, state and marital status. Other independent variables in this study included general self-efficacy, work locus of control, coping styles and the professional nursing practice environment. The dependent variables were job satisfaction and caring efficacy. Results: A confirmatory factor analysis of the Brisbane Practice Environment Measure (B-PEM) was conducted. A five-factor structure of the B-PEM was confirmed. Relationships between socio-demographic variables, caring efficacy and job satisfaction, were identified at the bivariate and multivariable levels. Further, examination using structural equation modelling revealed general self-efficacy, work locus of control, coping style and the professional nursing practice environment contributed to caring efficacy and job satisfaction of registered nurses in Australia. Conclusion: This research contributes to the literature on how socio-demographic, personal and environmental variables (work locus of control, general self-efficacy and the nursing practice environment) influence caring efficacy and job satisfaction in registered nurses in Australia. Caring efficacy and job satisfaction may be improved if general self-efficacy is high in those that have an internal work locus of control. The study has also shown that practice environments that provide the necessary resources improve job satisfaction in nurses. The results have identified that the development and implementation of strategies for professional development and orientation programmes that enhance self-efficacy and work locus of control may contribute to better quality nursing practice and job satisfaction. This may further assist registered nurses towards focusing on improving their practice abilities. These strategies along with practice environments that provide the necessary resources for nurses to practice effectively may lead to better job satisfaction. This information is important for nursing leaders, healthcare organisations and policymakers, as the development and implementation of these strategies may lead to better recruitment and retention of nurses. The study results will contribute to the national and international literature on self-efficacy, job satisfaction and nursing practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quality oriented management systems and methods have become the dominant business and governance paradigm. From this perspective, satisfying customers’ expectations by supplying reliable, good quality products and services is the key factor for an organization and even government. During recent decades, Statistical Quality Control (SQC) methods have been developed as the technical core of quality management and continuous improvement philosophy and now are being applied widely to improve the quality of products and services in industrial and business sectors. Recently SQC tools, in particular quality control charts, have been used in healthcare surveillance. In some cases, these tools have been modified and developed to better suit the health sector characteristics and needs. It seems that some of the work in the healthcare area has evolved independently of the development of industrial statistical process control methods. Therefore analysing and comparing paradigms and the characteristics of quality control charts and techniques across the different sectors presents some opportunities for transferring knowledge and future development in each sectors. Meanwhile considering capabilities of Bayesian approach particularly Bayesian hierarchical models and computational techniques in which all uncertainty are expressed as a structure of probability, facilitates decision making and cost-effectiveness analyses. Therefore, this research investigates the use of quality improvement cycle in a health vii setting using clinical data from a hospital. The need of clinical data for monitoring purposes is investigated in two aspects. A framework and appropriate tools from the industrial context are proposed and applied to evaluate and improve data quality in available datasets and data flow; then a data capturing algorithm using Bayesian decision making methods is developed to determine economical sample size for statistical analyses within the quality improvement cycle. Following ensuring clinical data quality, some characteristics of control charts in the health context including the necessity of monitoring attribute data and correlated quality characteristics are considered. To this end, multivariate control charts from an industrial context are adapted to monitor radiation delivered to patients undergoing diagnostic coronary angiogram and various risk-adjusted control charts are constructed and investigated in monitoring binary outcomes of clinical interventions as well as postintervention survival time. Meanwhile, adoption of a Bayesian approach is proposed as a new framework in estimation of change point following control chart’s signal. This estimate aims to facilitate root causes efforts in quality improvement cycle since it cuts the search for the potential causes of detected changes to a tighter time-frame prior to the signal. This approach enables us to obtain highly informative estimates for change point parameters since probability distribution based results are obtained. Using Bayesian hierarchical models and Markov chain Monte Carlo computational methods, Bayesian estimators of the time and the magnitude of various change scenarios including step change, linear trend and multiple change in a Poisson process are developed and investigated. The benefits of change point investigation is revisited and promoted in monitoring hospital outcomes where the developed Bayesian estimator reports the true time of the shifts, compared to priori known causes, detected by control charts in monitoring rate of excess usage of blood products and major adverse events during and after cardiac surgery in a local hospital. The development of the Bayesian change point estimators are then followed in a healthcare surveillances for processes in which pre-intervention characteristics of patients are viii affecting the outcomes. In this setting, at first, the Bayesian estimator is extended to capture the patient mix, covariates, through risk models underlying risk-adjusted control charts. Variations of the estimator are developed to estimate the true time of step changes and linear trends in odds ratio of intensive care unit outcomes in a local hospital. Secondly, the Bayesian estimator is extended to identify the time of a shift in mean survival time after a clinical intervention which is being monitored by riskadjusted survival time control charts. In this context, the survival time after a clinical intervention is also affected by patient mix and the survival function is constructed using survival prediction model. The simulation study undertaken in each research component and obtained results highly recommend the developed Bayesian estimators as a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances as well as industrial and business contexts. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The empirical results and simulations indicate that the Bayesian estimators are a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The advantages of the Bayesian approach seen in general context of quality control may also be extended in the industrial and business domains where quality monitoring was initially developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a nonlinear H_infinity controller for stabilization of velocities, attitudes and angular rates of a fixed-wing unmanned aerial vehicle (UAV) in a windy environment. The suggested controller aims to achieve a steady-state flight condition in the presence of wind gusts such that the host UAV can be maneuvered to avoid collision with other UAVs during cruise flight with safety guarantees. This paper begins with building a proper model capturing flight aerodynamics of UAVs. Then a nonlinear controller is developed with gust attenuation and rapid response properties. Simulations are conducted for the Shadow UAV to verify performance of the proposed con- troller. Comparative studies with the proportional-integral-derivative (PID) controllers demonstrate that the proposed controller exhibits great performance improvement in a gusty environment, making it suitable for integration into the design of flight control systems for cruise flight of UAVs.