991 resultados para AFFERENT-PROJECTIONS
Resumo:
The surface topography and ultrastructure of the tegument of Paranaella luquei Kohn, Baptista-Farias & Cohen, 2000, a microcotylid monogenean parasite from the gills of Hypostomus regani (Ihering, 1905) (Loricariidae) was studied by scanning (SEM) and transmission electron microscopy (TEM). By SEM, it was observed that the tegument presents transversal ridges, forming folds in the ventral and dorsal surfaces and microvillous-like tegumental projections in the anterior and median regions of body. These projections were also observed by TEM. The tegument is made up of a syncytium delimited by apical and basal plasma membranes, containing inclusion bodies and mitochondria, connected to the nucleated region by means of cytoplasmatic processes. The tegumental cells present a well developed nucleus and cytoplasm containing inclusion bodies, similar to those found on the external layer, mitochondria, rough endoplasmatic reticulum and free ribossomes.
Resumo:
The hypothalamic neuropeptide oxytocin (OT), which controls childbirth and lactation, receives increasing attention for its effects on social behaviors, but how it reaches central brain regions is still unclear. Here we gained by recombinant viruses selective genetic access to hypothalamic OT neurons to study their connectivity and control their activity by optogenetic means. We found axons of hypothalamic OT neurons in the majority of forebrain regions, including the central amygdala (CeA), a structure critically involved in OT-mediated fear suppression. In vitro, exposure to blue light of channelrhodopsin-2-expressing OT axons activated a local GABAergic circuit that inhibited neurons in the output region of the CeA. Remarkably, in vivo, local blue-light-induced endogenous OT release robustly decreased freezing responses in fear-conditioned rats. Our results thus show widespread central projections of hypothalamic OT neurons and demonstrate that OT release from local axonal endings can specifically control region-associated behaviors.
Resumo:
PURPOSE OF REVIEW: The control of glucose and energy homeostasis, including feeding behaviour, is tightly regulated by gut-derived peptidic and nonpeptidic endocrine mediators, autonomic nervous signals, as well as nutrients such as glucose. We will review recent findings on the role of the gastrointestinal tract innervation and of portal vein glucose sensors; we will review selected data on the action of gastrointestinally released hormones. RECENT FINDINGS: The involvement of mechanosensory vagal afferents in postprandial meal termination has been clarified using mouse models with selective impairments of genes required for development of mechanosensory fibres. These activate central glucogen-like peptide-1/glucogen-like peptide-2 containing ascending pathways linking the visceroceptive brainstem neurons to hypothalamic nuclei. Mucosal terminals comprise the chemosensory vagal afferents responsive to postprandially released gastrointestinal hormones. The mechanism by which the hepatoportal glucose sensor stimulates glucose utilization by muscles was demonstrated, using genetically modified mice, to be insulin-independent but to require GLUT4 and AMP-kinase. This sensor is a key site of glucogen-like peptide-1 action and plays a critical role in triggering first phase insulin secretion. PeptideYY and ghrelin target intracerebral receptors as they are bidirectionally transported across the blood brain barrier. The anorectic functions of peripherally released peptideYY may however be mediated both via vagal afferents and intracerebral Y2 receptors in the brainstem and arcuate nucleus. SUMMARY: These recent findings demonstrate that the use of improved anatomical and physiological techniques and animal models with targeted gene modifications lead to an improved understanding of the complex role of gastrointestinal signals in the control of energy homeostasis.
Resumo:
Report of the National Advisory Committee on Palliative Care It is anticipated that the need for palliative care services will increase in coming years. Population projections indicate that between 1996 and 2031 the population aged 65 years and over is expected to more than double. Currently, over 95% of all patients availing of palliative care services suffer from cancer. The number of people dying from cancer is expected to rise in future years, due to the ageing population. Click here to download the document (PDF, 1mb)
Resumo:
The Millennium Declaration (2000) set as one of its targets a substantial reduction in child mortality. This paper studies whether the massive increase in development aid can account for part of the reduction in child mortality observed in developing countries since the year 2000. To do so, we analyze a panel of more than 130 developing countries over the 2000-2008 period. We use the time trend evolution of aid to identify an exogenous source of variation. Total aid has had no statistically significant effect on child mortality. However, a disaggregate analysis identifies certain sectors of aid that have had a significant impact. The effects have been larger in high mortality countries, including Sub-Saharan Africa. Projections based on our estimates strongly support the concern that most countries in that region will miss the Millennium Goals target on child mortality.
Resumo:
In fear conditioning, an animal learns to associate an unconditioned stimulus (US), such as a shock, and a conditioned stimulus (CS), such as a tone, so that the presentation of the CS alone can trigger conditioned responses. Recent research on the lateral amygdala has shown that following cued fear conditioning, only a subset of higher-excitable neurons are recruited in the memory trace. Their selective deletion after fear conditioning results in a selective erasure of the fearful memory. I hypothesize that the recruitment of highly excitable neurons depends on responsiveness to stimuli, intrinsic excitability and local connectivity. In addition, I hypothesize that neurons recruited for an initial memory also participate in subsequent memories, and that changes in neuronal excitability affect secondary fear learning. To address these hypotheses, I will show that A) a rat can learn to associate two successive short-term fearful memories; B) neuronal populations in the LA are competitively recruited in the memory traces depending on individual neuronal advantages, as well as advantages granted by the local network. By performing two successive cued fear conditioning experiments, I found that rats were able to learn and extinguish the two successive short-term memories, when tested 1 hour after learning for each memory. These rats were equipped with a system of stable extracellular recordings that I developed, which allowed to monitor neuronal activity during fear learning. 233 individual putative pyramidal neurons could modulate their firing rate in response to the conditioned tone (conditioned neurons) and/or non- conditioned tones (generalizing neurons). Out of these recorded putative pyramidal neurons 86 (37%) neurons were conditioned to one or both tones. More precisely, one population of neurons encoded for a shared memory while another group of neurons likely encoded the memories' new features. Notably, in spite of a successful behavioral extinction, the firing rate of those conditioned neurons in response to the conditioned tone remained unchanged throughout memory testing. Furthermore, by analyzing the pre-conditioning characteristics of the conditioned neurons, I determined that it was possible to predict neuronal recruitment based on three factors: 1) initial sensitivity to auditory inputs, with tone-sensitive neurons being more easily recruited than tone- insensitive neurons; 2) baseline excitability levels, with more highly excitable neurons being more likely to become conditioned; and 3) the number of afferent connections received from local neurons, with neurons destined to become conditioned receiving more connections than non-conditioned neurons. - En conditionnement de la peur, un animal apprend à associer un stimulus inconditionnel (SI), tel un choc électrique, et un stimulus conditionné (SC), comme un son, de sorte que la présentation du SC seul suffit pour déclencher des réflexes conditionnés. Des recherches récentes sur l'amygdale latérale (AL) ont montré que, suite au conditionnement à la peur, seul un sous-ensemble de neurones plus excitables sont recrutés pour constituer la trace mnésique. Pour apprendre à associer deux sons au même SI, je fais l'hypothèse que les neurones entrent en compétition afin d'être sélectionnés lors du recrutement pour coder la trace mnésique. Ce recrutement dépendrait d'un part à une activation facilité des neurones ainsi qu'une activation facilité de réseaux de neurones locaux. En outre, je fais l'hypothèse que l'activation de ces réseaux de l'AL, en soi, est suffisante pour induire une mémoire effrayante. Pour répondre à ces hypothèses, je vais montrer que A) selon un processus de mémoire à court terme, un rat peut apprendre à associer deux mémoires effrayantes apprises successivement; B) des populations neuronales dans l'AL sont compétitivement recrutées dans les traces mnésiques en fonction des avantages neuronaux individuels, ainsi que les avantages consentis par le réseau local. En effectuant deux expériences successives de conditionnement à la peur, des rats étaient capables d'apprendre, ainsi que de subir un processus d'extinction, pour les deux souvenirs effrayants. La mesure de l'efficacité du conditionnement à la peur a été effectuée 1 heure après l'apprentissage pour chaque souvenir. Ces rats ont été équipés d'un système d'enregistrements extracellulaires stables que j'ai développé, ce qui a permis de suivre l'activité neuronale pendant l'apprentissage de la peur. 233 neurones pyramidaux individuels pouvaient moduler leur taux d'activité en réponse au son conditionné (neurones conditionnés) et/ou au son non conditionné (neurones généralisant). Sur les 233 neurones pyramidaux putatifs enregistrés 86 (37%) d'entre eux ont été conditionnés à un ou deux tons. Plus précisément, une population de neurones code conjointement pour un souvenir partagé, alors qu'un groupe de neurones différent code pour de nouvelles caractéristiques de nouveaux souvenirs. En particulier, en dépit d'une extinction du comportement réussie, le taux de décharge de ces neurones conditionné en réponse à la tonalité conditionnée est resté inchangée tout au long de la mesure d'apprentissage. En outre, en analysant les caractéristiques de pré-conditionnement des neurones conditionnés, j'ai déterminé qu'il était possible de prévoir le recrutement neuronal basé sur trois facteurs : 1) la sensibilité initiale aux entrées auditives, avec les neurones sensibles aux sons étant plus facilement recrutés que les neurones ne répondant pas aux stimuli auditifs; 2) les niveaux d'excitabilité des neurones, avec les neurones plus facilement excitables étant plus susceptibles d'être conditionnés au son ; et 3) le nombre de connexions reçues, puisque les neurones conditionné reçoivent plus de connexions que les neurones non-conditionnés. Enfin, nous avons constaté qu'il était possible de remplacer de façon satisfaisante le SI lors d'un conditionnement à la peur par des injections bilatérales de bicuculline, un antagoniste des récepteurs de l'acide y-Aminobutirique.
Resumo:
This report has two main objectives. The first is to set out national and health board area population projections for Ireland in the period 1991-2011, with special reference to the elderly population. The second is to consider the implications of the predicted trends in the elderly population for health and social care services over the same period, taking account of official policy objectives and service norms for the health services. Download the Report here
Resumo:
Protecting native biodiversity against alien invasive species requires powerful methods to anticipate these invasions and to protect native species assumed to be at risk. Here, we describe how species distribution models (SDMs) can be used to identify areas predicted as suitable for rare native species and also predicted as highly susceptible to invasion by alien species, at present and under future climate and land-use scenarios. To assess the condition and dynamics of such conflicts, we developed a combined predictive modelling (CPM) approach, which predicts species distributions by combining two SDMs fitted using subsets of predictors classified as acting at either regional or local scales. We illustrate the CPM approach for an alien invader and a rare species associated to similar habitats in northwest Portugal. Combined models predict a wider variety of potential species responses, providing more informative projections of species distributions and future dynamics than traditional, non-combined models. They also provide more informative insight regarding current and future rare-invasive conflict areas. For our studied species, conflict areas of highest conservation relevance are predicted to decrease over the next decade, supporting previous reports that some invasive species may contract their geographic range and impact due to climate change. More generally, our results highlight the more informative character of the combined approach to address practical issues in conservation and management programs, especially those aimed at mitigating the impact of invasive plants, land-use and climate changes in sensitive regions
Resumo:
Microtubule-associated proteins (MAPs) are essential components necessary for the early growth process of axons and dendrites, and for the structural organization within cells. Both MAP2 and MAP5 are involved in these events, MAP2 occupying a role predominantly in dendrites, and MAP5 being involved in both axonal and dendritic growth. In the chick dorsal root ganglia, pseudo-unipolar sensory neurons have a T-shaped axon and are devoid of any dendrites. Therefore, they offer an ideal model to study the differential expression of MAPs during DRG development, specifically during axonal growth. In this study we have analyzed the expression and localization of MAP2 and MAP5 isoforms during chick dorsal root ganglia development in vivo, and in cell culture. In DRG, both MAPs appeared as early as E5. MAP2 consists of the 3 isoforms MAP2a, b and c. On blots, no MAP2a could be found at any stage. MAP2b increased between E6 and E10 and thereafter diminished slowly in concentration, while MAP2c was found between stages E6 and E10 in DRG. By immunocytochemistry, MAP2 isoforms were mainly located in the neuronal perikarya and in the proximal portion of axons, but could not be localized to distal axonal segments, nor in sciatic nerve at any developmental stage. On blots, MAP5 was present in two isoforms, MAP5a and MAP5b. The concentration of MAP5a was highest at E6 and then decreased to a low level at E18. In contrast, MAP5b increased between E6 and E10, and rapidly decreased after E14. Only MAP5a was present in sciatic nerve up to E14. Immunocytochemistry revealed that MAP5 was localized mainly in axons, although neuronal perikarya exhibited a faint immunostaining. Strong staining of axons was observed between E10 and E14, at a time coincidental to a period of intense axonal outgrowth. After E14 immunolabeling of MAP5 decreased abruptly. In DRG culture, MAP2 was found exclusively in the neuronal perikarya and the most proximal neurite segment. In contrast, MAP5 was detected in the neuronal cell bodies and all along their neurites. In conclusion, MAP2 seems involved in the early establishment of the cytoarchitecture of cell bodies and the proximal axon segment of somatosensory neurons, while MAP5 is clearly related to axonal growth.
Resumo:
Tackling Chronic Disease – A Policy Framework for the Management of Chronic Diseases Chronic diseases are recognised as a major health challenge. In the healthcare system, they represent the major component of service activity and expenditure, as well as the major contributor to mortality and ill-health in this country. Given the population projections which predict a doubling of the elderly population over the next 30 years, this will give rise to a significant increase in chronic diseases with the consequent burden on society, the healthcare system and individuals. Click here to download PDF 1.8mb
Resumo:
The purpose of this Supplementary Report is to advise on how the budgetary measures impact on the conclusions in relation to tax credits and stamp duty included in the Authority’s November 2011 Report. in doing so, we will assess the direct impacts and we will discuss some scenarios. However, the Authority’s advice in this area relies on projections of the health insurance market and, in light of the above, there is considerable uncertainty surrounding any projections of how claims inflation or the market size may develop, even in the short and medium terms. Supplementary Report of the HIA to the Minister for Health, in accordance with Section 7E(1)(b) of the Health Insurance Acts, 1994-2009 (Redacted Version) Click here to download PDF 3.2mb
Resumo:
Adjuvants have been shown since many years to have an important role in enhancing the immune responses against the co-administered antigens used as vaccines. The continuous study of the mechanism of action of adjuvants is necessary to develop further safe and efficacious vaccines. Complete Freund's adjuvant (CFA) is currently in use as adjuvant to induce some autoimmune diseases in murine models, therefore the study of the mechanisms involved in the generation of the related immune responses could be instrumental for the understanding of the induction of inflammatory Thl7 responses. In the present work, we showed in C57B1/6 mice that CFA peripheral administration induces very early, at 6 h, a potent influx of CDllb+ cells, mainly neutrophils (CD11b+Ly6GhighLy6Cint) and monocytes (CD11b+Ly6GlowLy6Chigh), in the draining lymph node. By investigating the route by which neutrophils reach the lymph node we observed that, around 20% of them arrive from the afferent lymph and the majority stains positive for Mycobacterium tuberculosis. We also observed a correlation between the influx of neutrophils and an increase in IL-23 and IL-Ιβ, together with several inflammatory chemokines, in the draining lymph node. Concomitantly, we detected the expression of the IL-23 receptor on CDllc+ DCs. Moreover, we confirmed the ability of murine neutrophils to express IL-23 both, in vitro by stimulating bone-marrow extracted PMNs with Mycobacterium tuberculosis, and on total cells from draining lymph node by immunohistochemistry. We also observed by in vivo priming a reduction in the percentage of IFN-γ and CXCR3 expressing Τ cells upon depletion of neutrophils. Altogether, we show that upon stimulation from the periphery, the draining lymph node undergo changes in cytokine/chemokine production leading to the recruitment of different leukocytes subpopulations. Here we show that CFA induces a rapid influx of neutrophils which are responsible for the production of IL-23 that in turn influences the generation of Τ helper cells.
Resumo:
The current study investigates a new model of barrel cortex activation using stimulation of the infraorbital branch of the trigeminal nerve. A robust and reproducible activation of the rat barrel cortex was obtained following trigeminal nerve stimulation. Blood oxygen level-dependent (BOLD) effects were obtained in the primary somatosensory barrel cortex (S1BF), the secondary somatosensory cortex (S2) and the motor cortex. These cortical areas were reached from afferent pathways from the trigeminal ganglion, the trigeminal nuclei and thalamic nuclei from which neurons project their axons upon whisker stimulation. The maximum BOLD responses were obtained for a stimulus frequency of 1 Hz, a stimulus pulse width of 100 μs and for current intensities between 1.5 and 3 mA. The BOLD response was nonlinear as a function of frequency and current intensity. Additionally, modeling BOLD responses in the rat barrel cortex from separate cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO(2)) measurements showed good agreement with the shape and amplitude of measured BOLD responses as a function of stimulus frequency and will potentially allow to identify the sources of BOLD nonlinearities. Activation of the rat barrel cortex using trigeminal nerve stimulation will contribute to the interpretation of the BOLD signals from functional magnetic resonance imaging studies.
Resumo:
To analyze the neural basis of electric taste we performed electrical neuroimaging analyses of event-related potentials (ERPs) recorded while participants received electrical pulses to the tongue. Pulses were presented at individual taste threshold to excite gustatory fibers selectively without concomitant excitation of trigeminal fibers and at high intensity evoking a prickling and, thus, activating trigeminal fibers. Sour, salty and metallic tastes were reported at both intensities while clear prickling was reported at high intensity only. ERPs exhibited augmented amplitudes and shorter latencies for high intensity. First activations of gustatory areas (bilateral anterior insula, medial orbitofrontal cortex) were observed at 70-80ms. Common somatosensory regions were more strongly, but not exclusively, activated at high intensity. Our data provide a comprehensive view on the dynamics of cortical processing of the gustatory and trigeminal portions of electric taste and suggest that gustatory and trigeminal afferents project to overlapping cortical areas.
Resumo:
A noticeable increase in mean temperature has already been observed in Switzerland and summer temperatures up to 4.8 K warmer are expected by 2090. This article reviews the observed impacts of climate change on biodiversity and consider some perspectives for the future at the national level. The following impacts are already evident for all considered taxonomic groups: elevation shifts of distribution toward mountain summits, spread of thermophilous species, colonisation by new species from warmer areas and phenological shifts. Additionally, in the driest areas, increasing droughts are affecting tree survival and fish species are suffering from warm temperatures in lowland regions. These observations are coherent with model projections, and future changes will probably follow the current trends. These changes will likely cause extinctions for alpine species (competition, loss of habitat) and lowland species (temperature or drought stress). In the very urbanised Swiss landscape, the high fragmentation of the natural ecosystems will hinder the dispersal of many species towards mountains. Moreover, disruptions in species interactions caused by individual migration rates or phenological shifts are likely to have consequences for biodiversity. Conversely, the inertia of the ecosystems (species longevity, restricted dispersal) and the local persistence of populations will probably result in lower extinction rates than expected with some models, at least in 21st century. It is thus very difficult to estimate the impact of climate change in terms of species extinctions. A greater recognition by society of the intrinsic value of biodiversity and of its importance for our existence will be essential to put in place effective mitigation measures and to safeguard a maximum number of native species.