987 resultados para 765
Resumo:
The amount of solar radiation transmitted through Arctic sea ice is determined by the thickness and physical properties of snow and sea ice. Light transmittance is highly variable in space and time since thickness and physical properties of snow and sea ice are highly heterogeneous on variable time and length scales. We present field measurements of under-ice irradiance along transects under undeformed land-fast sea ice at Barrow, Alaska (March, May, and June 2010). The measurements were performed with a spectral radiometer mounted on a floating under-ice sled. The objective was to quantify the spatial variability of light transmittance through snow and sea ice, and to compare this variability along its seasonal evolution. Along with optical measurements, snow depth, sea ice thickness, and freeboard were recorded, and ice cores were analyzed for chlorophyll a and particulate matter. Our results show that snow cover variability prior to onset of snow melt causes as much relative spatial variability of light transmittance as the contrast of ponded and white ice during summer. Both before and after melt onset, measured transmittances fell in a range from one third to three times the mean value. In addition, we found a twentyfold increase of light transmittance as a result of partial snowmelt, showing the seasonal evolution of transmittance through sea ice far exceeds the spatial variability. However, prior melt onset, light transmittance was time invariant and differences in under-ice irradiance were directly related to the spatial variability of the snow cover.
Resumo:
In this study four data quality flags are presented for automated and unmanned above-water hyperspectral optical measurements collected underway in the North Sea, The Minch, Irish Sea and Celtic Sea in April/May 2009. Coincident to these optical measurements a DualDome D12 (Mobotix, Germany) camera system was used to capture sea surface and sky images. The first three flags are based on meteorological conditions, to select erroneous incoming solar irradiance (ES) taken during dusk, dawn, before significant incoming solar radiation could be detected or under rainfall. Furthermore, the relative azimuthal angle of the optical sensors to the sun is used to identify possible sunglint free sea surface zones. A total of 629 spectra remained after applying the meteorological masks (first three flags). Based on this dataset, a fourth flag for sunglint was generated by analysing and evaluating water leaving radiance (LW) and remote sensing reflectance (RRS) spectral behaviour in the presence and absence of sunglint salient in the simultaneously available sea surface images. Spectra conditions satisfying "mean LW (700-950 nm) < 2 mW/m**2/nm/Sr" or alternatively "minimum RRS (700-950 nm) < 0.010/Sr", mask the most measurements affected by sunglint, providing efficient flagging of sunglint in automated quality control. It is confirmed that valid optical measurements can be performed 0° <= theta <= 360° although 90° <= theta <= 135° is recommended.
Resumo:
Moderately to sparsely nannofossiliferous Neocomian siliciclastics and rich Aptian-Albian nannofossil chalks were cored at two Leg 123 sites on the abyssal plains off northwestern Australia. At Site 765, the basal 70 m of cored section yields questionable Tithonian and Berriasian to early Hauterivian assemblages of moderate diversity containing Cruelellipsis cuvillieri, Tegumentum striatum, Speetonia colligata, and Crucibiscutum salebrosum. The overlying Hauterivianlower Aptian is represented by 140 m of sediments barren of nannofossils. Above this, the remaining 80 m of the Lower Cretaceous section has been assigned to the Rhagodiscus angustus Zone (late Aptian-early Albian in age) and the Prediscosphaera columnata Zone (middle-late Albian in age). Common species include Rhagodiscus angustus, Prediscosphaera columnata, Eprolithus floralis, Eprolithus sp., Chiastozygus litterarius, Rucinolithus irregularis, and Flabellites biforaminis. At Site 766, the Neocomian, represented by 200 m of sediment, yields C. cuvillieri, T. striatum, S. colligata, and C. salebrosum. Within the overlying Aptian-Albian sequence of 80 m, the Rhagodiscus angustus, and P. columnata zones were recognized. The paleobiogeographic patterns and implications are discussed, with special emphasis paid to the bipolar high-latitude distribution pattern of C. salebrosum in the Valanginian-Hauterivian. Biostratigraphically important species are discussed and their occurrence in the Indian Ocean is compared with one from the Tethys and Boreal realms. Two new species, Serbiscutum gaultensis and Eprolithus bettenstaedtii, are described.