986 resultados para 681.3:656.1
Resumo:
The response of liquid xenon to low-energy electronic recoils is relevant in the search for dark-matter candidates which interact predominantly with atomic electrons in the medium, such as axions or axionlike particles, as opposed to weakly interacting massive particles which are predicted to scatter with atomic nuclei. Recently, liquid-xenon scintillation light has been observed from electronic recoils down to 2.1 keV, but without applied electric fields that are used in most xenon dark-matter searches. Applied electric fields can reduce the scintillation yield by hindering the electron-ion recombination process that produces most of the scintillation photons. We present new results of liquid xenon's scintillation emission in response to electronic recoils as low as 1.5 keV, with and without an applied electric field. At zero field, a reduced scintillation output per unit deposited energy is observed below 10 keV, dropping to nearly 40% of its value at higher energies. With an applied electric field of 450 V/cm, we observe a reduction of the scintillation output to about 75% relative to the value at zero field. We see no significant energy dependence of this value between 1.5 and 7.8 keV. With these results, we estimate the electronic-recoil energy thresholds of ZEPLIN-III, XENON10, XENON100, and XMASS to be 2.8, 2.5, 2.3, and 1.1 keV, respectively, validating their excellent sensitivity to low-energy electronic recoils.
Resumo:
BACKGROUND After heart transplantation (HTx), the interindividual pharmacokinetic variability of immunosuppressive drugs represents a major therapeutic challenge due to the narrow therapeutic window between over-immunosuppression causing toxicity and under-immunosuppression leading to graft rejection. Although genetic polymorphisms have been shown to influence pharmacokinetics of immunosuppressants, data in the context of HTx are scarce. We thus assessed the role of genetic variation in CYP3A4, CYP3A5, POR, NR1I2, and ABCB1 acting jointly in immunosuppressive drug pathways in tacrolimus (TAC) and ciclosporin (CSA) dose requirement in HTx recipients. METHODS Associations between 7 functional genetic variants and blood dose-adjusted trough (C0) concentrations of TAC and CSA at 1, 3, 6, and 12 months after HTx were evaluated in cohorts of 52 and 45 patients, respectively. RESULTS Compared with CYP3A5 nonexpressors (*3/*3 genotype), CYP3A5 expressors (*1/*3 or *1/*1 genotype) required around 2.2- to 2.6-fold higher daily TAC doses to reach the targeted C0 concentration at all studied time points (P ≤ 0.003). Additionally, the POR*28 variant carriers showed higher dose-adjusted TAC-C0 concentrations at all time points resulting in significant differences at 3 (P = 0.025) and 6 months (P = 0.047) after HTx. No significant associations were observed between the genetic variants and the CSA dose requirement. CONCLUSIONS The CYP3A5*3 variant has a major influence on the required TAC dose in HTx recipients, whereas the POR*28 may additionally contribute to the observed variability. These results support the importance of genetic markers in TAC dose optimization after HTx.
Resumo:
PURPOSE To evaluate the accuracy, safety, and efficacy of cervical nerve root injection therapy using magnetic resonance guidance in an open 1.0 T MRI system. METHODS Between September 2009 and April 2012, a total of 21 patients (9 men, 12 women; mean age 47.1 ± 11.1 years) underwent MR-guided cervical periradicular injection for cervical radicular pain in an open 1.0 T system. An interactive proton density-weighted turbo spin echo (PDw TSE) sequence was used for real-time guidance of the MR-compatible 20-gauge injection needle. Clinical outcome was evaluated on a verbal numeric rating scale (VNRS) before injection therapy (baseline) and at 1 week and 1, 3, and 6 months during follow-up. RESULTS All procedures were technically successful and there were no major complications. The mean preinterventional VNRS score was 7.42 and exhibited a statistically significant decrease (P < 0.001) at all follow-up time points: 3.86 ± 1.53 at 1 week, 3.21 ± 2.19 at 1 month, 2.58 ± 2.54 at 3 months, and 2.76 ± 2.63 at 6 months. At 6 months, 14.3 % of the patients reported complete resolution of radicular pain and 38.1 % each had either significant (4-8 VNRS score points) or mild (1-3 VNRS score points) relief of pain; 9.5 % experienced no pain relief. CONCLUSION Magnetic resonance fluoroscopy-guided periradicular cervical spine injection is an accurate, safe, and efficacious treatment option for patients with cervical radicular pain. The technique may be a promising alternative to fluoroscopy- or CT-guided injections of the cervical spine, especially in young patients and in patients requiring repeat injections.
Resumo:
BACKGROUND: The understanding of molecular mechanisms leading to poor prognosis in pancreatic cancer may help develop treatment options. N-myc downstream-regulated gene-1 (NDRG1) has been correlated to better prognosis in pancreatic cancer. Therefore, we thought to analyze how the loss of NDRG1 affects progression in an orthotopic xenograft animal model of recurrence. METHODS: Capan-1 cells were silenced for NDRG1 (C(sil)) or transfected with scrambled shRNA (C(scr)) and compared for anchorage-dependent and anchorage-independent growth, invasion and tube formation in vitro. In an orthotopic xenograft model of recurrence tumors were grown in the pancreatic tail. The effect of NDRG1 silencing was evaluated on tumor size and metastasis. RESULTS: The silencing of NDRG1 in Capan-1 cells leads to more aggressive tumor growth and metastasis. We found faster cell growth, double count of invaded cells and 1.8-fold increase in tube formation in vitro. In vivo local tumors were 5.9-fold larger (p = 0.006) and the number of metastases was higher in animals with tumors silenced for NDRG1 primarily (3 vs. 1.1; p = 0.005) and at recurrence (3.3 vs. 0.9; p = 0.015). CONCLUSION: NDRG1 may be an interesting therapeutic target as its silencing in human pancreatic cancer cells leads to a phenotype with more aggressive tumor growth and metastasis.
Resumo:
di Georgio Philippo Telemann
Resumo:
HIV-infected women are at increased risk of cervical intra-epithelial neoplasia (CIN) and invasive cervical cancer (ICC), but it has been difficult to disentangle the influences of heavy exposure to HPV infection, inadequate screening, and immunodeficiency. A case-control study including 364 CIN2/3 and 20 ICC cases matched to 1,147 controls was nested in the Swiss HIV Cohort Study (1985-2013). CIN2/3 risk was significantly associated with low CD4+ cell counts, whether measured as nadir (odds ratio (OR) per 100-cell/μL decrease=1.15, 95% CI: 1.08, 1.22), or at CIN2/3 diagnosis (1.10, 95% CI: 1.04, 1.16). An association was evident even for nadir CD4+ 200-349 versus ≥350 cells/μL (OR=1.57, 95% CI: 1.09, 2.25). After adjustment for nadir CD4+, a protective effect of >2-year cART use was seen against CIN2/3 (OR versus never cART use=0.64, 95% CI: 0.42, 0.98). Despite low study power, similar associations were seen for ICC, notably with nadir CD4+ (OR for 50 versus >350 cells/μL= 11.10, 95% CI: 1.24, 100). HPV16-L1 antibodies were significantly associated with CIN2/3, but HPV16-E6 antibodies were nearly exclusively detected in ICC. In conclusion, worsening immunodeficiency, even at only moderately decreased CD4+ cell counts (200-349 CD4+ cells/μL), is a significant risk factor for CIN2/3 and cervical cancer. This article is protected by copyright. All rights reserved.
Resumo:
Faldaprevir, a hepatitis C virus (HCV) NS3/4A protease inhibitor, was evaluated in HCV genotype 1-infected patients who failed peginterferon and ribavirin (PegIFN/RBV) treatment during one of three prior faldaprevir trials. Patients who received placebo plus PegIFN/RBV and had virological failure during a prior trial were enrolled and treated in two cohorts: prior relapsers (n = 43) and prior nonresponders (null responders, partial responders and patients with breakthrough; n = 75). Both cohorts received faldaprevir 240 mg once daily plus PegIFN/RBV for 24 weeks. Prior relapsers with early treatment success (ETS; HCV RNA <25 IU/mL detectable or undetectable at week 4 and <25 IU/mL undetectable at week 8) stopped treatment at week 24. Others received PegIFN/RBV through week 48. The primary efficacy endpoint was sustained virological response (HCV RNA <25 IU/mL undetectable) 12 weeks post treatment (SVR12). More prior nonresponders than prior relapsers had baseline HCV RNA ≥800 000 IU/mL (80% vs 58%) and a non-CC IL28B genotype (91% vs 70%). Rates of SVR12 (95% CI) were 95.3% (89.1, 100.0) among prior relapsers and 54.7% (43.4, 65.9) among prior nonresponders; corresponding ETS rates were 97.7% and 65.3%. Adverse events led to faldaprevir discontinuations in 3% of patients. The most common Division of AIDS Grade ≥2 adverse events were anaemia (13%), nausea (10%) and hyperbilirubinaemia (9%). In conclusion, faldaprevir plus PegIFN/RBV achieved clinically meaningful SVR12 rates in patients who failed PegIFN/RBV in a prior trial, with response rates higher among prior relapsers than among prior nonresponders. The adverse event profile was consistent with the known safety profile of faldaprevir.
Resumo:
von Telemann. [Textdichter: Gottfried Simonis]
Resumo:
In Fraktur
Resumo:
von Telemann. [Textverf.: Gottfried Simonis]
Resumo:
Telemann. [Text von Gottfried Simonis]
Resumo:
Extracellular signals regulate fungal development and, to sense and respond to these cues, fungi evolved signal transduction pathways similar to those in mammalian systems. In fungi, heterotrimeric G proteins, composed of α, β, and γ subunits, transduce many signals, such as pheromones and nutrients, intracellularly to alter adenylyl cyclase and MAPK cascades activity. ^ Previously, the Gα proteins GNA-1 and GNA-2 were characterized in regulating development in the fungus Neurospora crassa. R. A. Baasiri isolated a third Gα, gna-3, and P. S. Rowley generated Δgna-3 mutants. GNA-3 belongs to a fungal Gα family that regulates cAMP metabolism and virulence. The Δ gna-3 sexual cycle is defective in homozygous crosses, producing inviable spores. Δgna-3 mutants have reduced aerial hyphae formation and derepressed asexual sporulation (conidiation), causing accumulation of asexual spores (conidia). These defects are similar to an adenylyl cyclase mutant, cr-1; cAMP supplementation suppressed Δ gna-3 and cr-1. Inappropriate conidiation and expression of a conidiation gene, con-10, were higher in Δ gna-3 than cr-1 submerged cultures; peptone suppressed conidiation. Adenylyl cyclase activity and expression demonstrated that GNA-3 regulates enzyme levels. ^ A Δgna-1 cr-1 was analyzed with F. D. Ivey to differentiate GNA-1 roles in cAMP-dependent and -independent pathways. Δ gna-1 cr-1 defects were worse than cr-1 and refractory to cAMP, suggesting that GNA-1 is necessary for sensing extracellular CAMP. Submerged culture conidiation was highest in Δgna-1 cr-1, and only high cell density Δgna-1 cultures conidiated, which correlated with con-10 levels. Transcription of a putative heat shock cognate protein was highest in Δgna-1 cr-1. ^ Functional relationships between the three Gαs was analyzed by constructing Δgna-1 Δgna-2 Δ gna-3, Δgna-1 Δgna-3, and Δgna-2 Δgna-3 strains. Δ gna-2 Δgna-3 strains exhibited intensified Δ gna-3 phenotypes; Δgna-1 Δgna-2 Δgna-3 and Δgna-1 Δ gna-3 strains were identical to Δgna-1 cr-1 on plates and were non-responsive to cAMP. The highest levels of conidiation and con-10 were detected in submerged cultures of Δ gna-1 Δgna-2 Δgna-3 and Δgna-1 Δgna-3 mutants, which was partially suppressed by peptone supplementation. Stimulation of adenylyl cyclase is completely deficient in Δgna-1 Δ gna-2 Δgna-3 and Δgna-1 Δ gna-3 strains. Δgna-3 and Δ gna-1 Δgna-3 aerial hyphae and conidiation defects were suppressed by mutation of a PKA regulatory subunit. ^