982 resultados para 5-alpha Reductase Inhibitors
Resumo:
Alpha1-Acid glycoprotein (AAG) or orosomucoid was purified to homogeneity from human plasma by a separate two-step method using chromatography on immobilized Cibacron Blue F3G-A to cross-linked agarose and chromatography on hydroxyapatite. The conditions for the pre-purification of AAG by chromatography on immobilized Cibacron Blue F3G-A were first optimized using different buffer systems with different pH values. The overall yield of the combined techniques was 80% and ca. 12 mg of AAG were purified from an initial total amount of ca. 15 mg in a ca. 40 ml sample of human plasma. This method was applied to the purification of AAG samples corresponding to the three main phenotypes of the protein (FI*S/A, F1/A and S/A), from individual human plasma previously phenotyped for AAG. A study by isoelectric focusing with carrier ampholytes showed that the microheterogeneity of the purified F1*S/A, F1/A and S/A AAG samples was similar to that of AAG in the corresponding plasma, thus suggesting that no apparent desialylation of the glycoprotein occurred during the purification steps. This method was also applied to the purification of AAG samples corresponding to rare phenotypes of the protein (F1/A*AD, S/A*X0 and F1/A*C1) and the interactions of these variants with immobilized copper(II) ions were then studied at pH 7, by chromatography on an iminodiacetate Sepharose-Cu(II) gel. It was found that the different variants encoded by the first of the two genes coding for AAG in humans (i.e. the F1 and S variants) interacted non-specifically with the immobilized ligand, whereas those encoded by the second gene of AAG (i.e. the A, AD, X0 and C1 variants) strongly bound to immobilized Cu(II) ions. These results suggested that chromatography on an immobilized affinity Cu(II) adsorbent could be helpful to distinguish between the respective products of the two highly polymorphic genes which code for human AAG.
Resumo:
Methylmalonyl-CoA mutase (MCM) and propionyl-CoA carboxylase (PCC) are the key enzymes of the catabolic pathway of propionate metabolism and are mainly expressed in liver, kidney and heart. Deficiency of these enzymes leads to two classical organic acidurias: methylmalonic and propionic aciduria. Patients with these diseases suffer from a whole spectrum of neurological manifestations that are limiting their quality of life. Current treatment does not seem to effectively prevent neurological deterioration and pathophysiological mechanisms are poorly understood. In this article we show evidence for the expression of the catabolic pathway of propionate metabolism in the developing and adult rat CNS. Both, MCM and PCC enzymes are co-expressed in neurons and found in all regions of the CNS. Disease-specific metabolites such as methylmalonate, propionyl-CoA and 2-methylcitrate could thus be formed autonomously in the CNS and contribute to the pathophysiological mechanisms of neurotoxicity. In rat embryos (E15.5 and E18.5), MCM and PCC show a much higher expression level in the entire CNS than in the liver, suggesting a different, but important function of this pathway during brain development.
Resumo:
BACKGROUND: Administration of protease inhibitors (PIs) to HIV-infected individuals has been associated with hyperlipidemia. In this study, we characterized the lipoprotein profile in subjects receiving ritonavir, indinavir, or nelfinavir, alone or in combination with saquinavir. METHODS AND RESULTS: Plasma lipoprotein levels were quantified in 93 HIV-infected adults receiving PIs. Comparison was done with pretreatment values and with 28 nonPI-treated HIV-infected subjects. An elevation in plasma cholesterol levels was observed in all PI-treated groups but was more pronounced for ritonavir (2.0+/-0.3 mmol/L [mean+/-SEM], n=46, versus 0.1+/-0.2 mmol/L in nonPI treated group, P<0.001) than for indinavir (0.8+/-0.2 mmol/L, n=26, P=0.03) or nelfinavir (1.2+/-0.2 mmol/L, n=21, P=0.01). Administration of ritonavir, but not indinavir or nelfinavir, was associated with a marked elevation in plasma triglyceride levels (1.83+/-0.46 mmol/L, P=0.002). Plasma HDL-cholesterol levels remained unchanged. Combination of ritonavir or nelfinavir with saquinavir did not further elevate plasma lipid levels. A 48% increase in plasma levels of lipoprotein(a) was detected in PI-treated subjects with pretreatment Lp(a) values >20 mg/dL. Similar changes in plasma lipid levels were observed in 6 children receiving ritonavir. CONCLUSIONS: Administration of PIs to HIV-infected individuals is associated with a marked, compound-specific dyslipidemia. The risk of pancreatitis and premature atherosclerosis due to PI-associated dyslipidemia remains to be established.
Resumo:
The nuclear receptor PPAR alpha is a key regulatory transcription factor in lipid homeostasis, some liver detoxification processes and the control of inflammation. Recent findings suggest that many hypolipidemic drugs and anti-inflammatory agents can potentially act by binding to PPAR alpha and inducing its activity. Here, we identify some structure-function relationships in PPAR alpha, by using the species-specific responsiveness to the two hypolipidemic agents, Wy 14,643 and 5,8,11,14-eicosatetraynoic acid (ETYA). We first show that the species-specific differences are mediated primarily via the ligand binding domain of the receptor and that these two drugs are indeed ligands of PPAR alpha. By mutagenesis analyses we identify amino acid residues in the ligand binding domains of Xenopus, mouse and human PPAR alpha, that confer preferential responsiveness to ETYA and Wy 14,643. These findings will aid in the development of new synthetic PPAR alpha ligands as effective therapeutics for lipid-related diseases and inflammatory disorders.
Resumo:
BACKGROUND: To compare the incidence and timing of bone fractures in postmenopausal women treated with 5 years of adjuvant tamoxifen or letrozole for endocrine-responsive early breast cancer in the Breast International Group (BIG) 1-98 trial. METHODS: We evaluated 4895 patients allocated to 5 years of letrozole or tamoxifen in the BIG 1-98 trial who received at least some study medication (median follow-up 60.3 months). Bone fracture information (grade, cause, site) was collected every 6 months during trial treatment. RESULTS: The incidence of bone fractures was higher among patients treated with letrozole [228 of 2448 women (9.3%)] versus tamoxifen [160 of 2447 women (6.5%)]. The wrist was the most common site of fracture in both treatment groups. Statistically significant risk factors for bone fractures during treatment included age, smoking history, osteoporosis at baseline, previous bone fracture, and previous hormone replacement therapy. CONCLUSIONS: Consistent with other trials comparing aromatase inhibitors to tamoxifen, letrozole was associated with an increase in bone fractures. Benefits of superior disease control associated with letrozole and lower incidence of fracture with tamoxifen should be considered with the risk profile for individual patients.
Resumo:
OBJECTIVE: Endocannabinoid levels are elevated in human and mouse atherosclerosis, but their causal role is not well understood. Therefore, we studied the involvement of fatty acid amide hydrolase (FAAH) deficiency, the major enzyme responsible for endocannabinoid anandamide degradation, in atherosclerotic plaque vulnerability. METHODS AND RESULTS: We assessed atherosclerosis in apolipoprotein E-deficient (ApoE(-/-)) and ApoE(-/-)FAAH(-/-) mice. Before and after 5, 10, and 15 weeks on high-cholesterol diet, we analyzed weight, serum cholesterol, and endocannabinoid levels, and atherosclerotic lesions in thoracoabdominal aortas and aortic sinuses. Serum levels of FAAH substrates anandamide, palmitoylethanolamide (PEA), and oleoylethanolamide (OEA) were 1.4- to 2-fold higher in case of FAAH deficiency. ApoE(-/-)FAAH(-/-) mice had smaller plaques with significantly lower content of smooth muscle cells, increased matrix metalloproteinase-9 expression, and neutrophil content. Circulating and bone marrow neutrophil counts were comparable between both genotypes, whereas CXC ligand1 levels were locally elevated in aortas of FAAH-deficient mice. We observed enhanced recruitment of neutrophils, but not monocytes, to large arteries of ApoE(-/-) mice treated with FAAH inhibitor URB597. Spleens of ApoE(-/-)FAAH(-/-) mice had reduced CD4+FoxP3+regulatory T-cell content, and in vitro stimulation of splenocytes revealed significantly elevated interferon-γ and tumor necrosis factor-α production in case of FAAH deficiency. CONCLUSIONS: Increased anandamide and related FAAH substrate levels are associated with the development of smaller atherosclerotic plaques with high neutrophil content, accompanied by an increased proinflammatory immune response.
Resumo:
Glucose exerts inverse effects upon the secretory function of islet alpha- and beta-cells, suppressing glucagon release and increasing insulin release. This diverse action may result from differences in glucose transport and metabolism between the two cell types. The present study compares glucose transport in rat alpha- and beta-cells. beta-Cells transcribed GLUT2 and, to a lesser extent, GLUT 1; alpha-cells contained GLUT1 but no GLUT2 mRNA. No other GLUT-like sequences were found among cDNAs from alpha- or beta-cells. Both cell types expressed 43-kDa GLUT1 protein which was enhanced by culture. The 62-kDa beta-cell GLUT2 protein was converted to a 58-kDa protein after trypsin treatment of the cells without detectable consequences upon glucose transport kinetics. In beta-cells, the rates of glucose transport were 10-fold higher than in alpha-cells. In both cell types, glucose uptake exceeded the rates of glucose utilization by a factor of 10 or more. Glycolytic flux, measured as D-[5(3)H]glucose utilization, was comparable in alpha- and beta-cells between 1 and 10 mmol/liter substrate. In conclusion, differences in glucose transporter gene expression between alpha- and beta-cells can be correlated with differences in glucose transport kinetics but not with different glucose utilization rates.
Resumo:
Maintenance of the blood system is dependent on dormant haematopoietic stem cells (HSCs) with long-term self-renewal capacity. After injury these cells are induced to proliferate to quickly reestablish homeostasis(1). The signalling molecules promoting the exit of HSCs out of the dormant stage remain largely unknown. Here we show that in response to treatment of mice with interferon-alpha (IFN alpha), HSCs efficiently exit G(0) and enter an active cell cycle. HSCs respond to IFN alpha treatment by the increased phosphorylation of STAT1 and PKB/Akt (also known as AKT1), the expression of IFN alpha target genes, and the upregulation of stem cell antigen-1 (Sca-1, also known as LY6A). HSCs lacking the IFN alpha/beta receptor (IFNAR)(2), STAT1 (ref. 3) or Sca-1 (ref. 4) are insensitive to IFN alpha stimulation, demonstrating that STAT1 and Sca-1 mediate IFN alpha-induced HSC proliferation. Although dormant HSCs are resistant to the anti-proliferative chemotherapeutic agent 5-fluoro-uracil(1,5), HSCs pre-treated (primed) with IFN alpha and thus induced to proliferate are efficiently eliminated by 5-fluoro-uracil exposure in vivo. Conversely, HSCs chronically activated by IFN alpha are functionally compromised and are rapidly out-competed by non-activatable Ifnar(-/-) cells in competitive repopulation assays. Whereas chronic activation of the IFN alpha pathway in HSCs impairs their function, acute IFN alpha treatment promotes the proliferation of dormant HSCs in vivo. These data may help to clarify the so far unexplained clinical effects of IFN alpha on leukaemic cells(6,7), and raise the possibility for new applications of type I interferons to target cancer stem cells(8).
Resumo:
Several adenosine 3',5'-cyclic monophosphate (cAMP)-hydrolyzing phosphodiesterase isozymes are present in the pulmonary vasculature. The present study was designed to determine the effect of selective inhibitors of phosphodiesterase subtypes on prostaglandin E2 (PGE2)-induced relaxation of isolated fourth-generation pulmonary arteries of newborn lambs. PGE2 and forskolin caused pulmonary arteries to relax and induced an increase in the intracellular cAMP content in the vessels. The relaxation and change in cAMP content were augmented by milrinone and rolipram, inhibitors of phosphodiesterase type 3 (PDE3) and type 4 (PDE4), respectively. The augmentation in relaxation and the increase in cAMP content caused by milrinone plus rolipram was greater than the sum of the responses caused by either of the inhibitors alone. 8-Methoxymethyl-1-methyl-3-(2-methylpropyl)xanthine, an inhibitor of phosphodiesterase type 1, had no effect on relaxation and change in cAMP induced by PGE2 and forskolin. Acetylcholine alone had no effect on cAMP content in the vessels but augmented the relaxation and the increase in cAMP induced by PGE2 and forskolin in arteries with endothelium. This effect was not observed in arteries without endothelium or in arteries with endothelium treated with NG-nitro-L-arginine. These results suggest that PDE3 and PDE4 are the primary enzymes hydrolyzing cAMP of pulmonary arteries of newborn lambs and that an inhibition of both PDE3 and PDE4 would result in a greater effect than that caused by inhibition of either one of the subtype isozymes alone. Furthermore, endothelium-derived nitric oxide may enhance cAMP-mediated relaxation by inhibition of PDE3.
Resumo:
Nicotinamide phosphoribosyltransferase (NAMPT), also known as visfatin, is the rate-limiting enzyme in the salvage pathway of NAD biosynthesis from nicotinamide. Since its expression is upregulated during inflammation, NAMPT represents a novel clinical biomarker in acute lung injury, rheumatoid arthritis, and Crohn's disease. However, its role in disease progression remains unknown. We report here that NAMPT is a key player in inflammatory arthritis. Increased expression of NAMPT was confirmed in mice with collagen-induced arthritis, both in serum and in the arthritic paw. Importantly, a specific competitive inhibitor of NAMPT effectively reduced arthritis severity with comparable activity to etanercept, and decreased pro-inflammatory cytokine secretion in affected joints. Moreover, NAMPT inhibition reduced intracellular NAD concentration in inflammatory cells and circulating TNFalpha levels during endotoxemia in mice. In vitro pharmacological inhibition of NAMPT reduced the intracellular concentration of NAD and pro-inflammatory cytokine secretion by inflammatory cells. Thus, NAMPT links NAD metabolism to inflammatory cytokine secretion by leukocytes, and its inhibition might therefore have therapeutic efficacy in immune-mediated inflammatory disorders.
Resumo:
The toxicity of yew (Taxus spp) is well known from ancient times and is mainly due to taxins acting as inhibitors of calcium and sodium transport across the cell membrane of cardiac myocytes. The confirmation of yew taxins in body fluids can be carried out by liquid chromatography-tandem mass spectrometry (LC-MS/MS). However, before selecting this precise but expensive technique, an orientation test should be done to ascertain yew presence as toxic agent in the organism. As the 3,5-dimethoxyphenol (3,5-DMP), myrtenol and 1-octen-3-ol appear as glycosidically bound volatile compounds and are very yew specific, the detection of 3,5-DMP and the measurement of 1-octen-3-ol / myrtenol concentration ratio constitute reliable indicators of yew presence in forensic cases. The detection of these compounds is easily performed by gas chromatography-mass spectrometry (GC-MS) (SIM) after an enzymatic hydrolysis (β-glucosidase) allowing the release of volatile compounds from yew glycosides. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
The alpha-1 adrenergic receptors (alpha(1)ARs) are critical in sympathetically mediated vasoconstriction. The specific role of each alpha(1)AR subtype in regulating vasoconstriction remains highly controversial. Limited pharmacological studies suggest that differential alpha(1)AR responses may be the result of differential activation of junctional versus extrajunctional receptors. We tested the hypothesis that the alpha(1B)AR subtype is critical in mediating sympathetic junctional neurotransmission. We measured in vivo integrated cardiovascular responses to a hypotensive stimulus (induced via transient bilateral carotid occlusion [TBCO]) in alpha(1B)AR knockout (KO) mice and their wild-type (WT) littermates. In WT mice, after dissection of the carotid arteries and denervation of aortic baroreceptor buffering nerves, TBCO produced significant pressor and positive inotropic effects. Both responses were markedly attenuated in alpha(1B)AR KO mice (change systolic blood pressure 46+/-8 versus 11+/-2 mm Hg; percentage change in the end-systolic pressure-volume relationship [ESPVR] 36+/-7% versus 12+/-2%; WT versus KO; P<0.003). In vitro alpha(1)AR mesenteric microvascular contractile responses to endogenous norepinephrine (NE; elicited by electrical field stimulation 10 Hz) was markedly depressed in alpha(1B)AR KO mice compared with WT (12.4+/-1.7% versus 21.5+/-1.2%; P<0.001). In contrast, responses to exogenous NE were similar in alpha(1B)AR KO and WT mice (22.4+/-7.3% versus 33.4+/-4.3%; NS). Collectively, these results demonstrate a critical role for the alpha(1B)AR in baroreceptor-mediated adrenergic signaling at the vascular neuroeffector junction. Moreover, alpha(1B)ARs modulate inotropic responses to baroreceptor activation. The critical role for alpha(1B)AR in neuroeffector regulation of vascular tone and myocardial contractility has profound clinical implications for designing therapies for orthostatic intolerance.
Resumo:
ATP, released by both neurons and glia, is an important mediator of brain intercellular communication. We find that selective activation of purinergic P2Y1 receptors (P2Y1R) in cultured astrocytes triggers glutamate release. By total internal fluorescence reflection imaging of fluorescence-labeled glutamatergic vesicles, we document that such release occurs by regulated exocytosis. The stimulus-secretion coupling mechanism involves Ca2+ release from internal stores and is controlled by additional transductive events mediated by tumor necrosis factor-alpha (TNFalpha) and prostaglandins (PG). P2Y1R activation induces release of both TNFalpha and PGE2 and blocking either one significantly reduces glutamate release. Accordingly, astrocytes from TNFalpha-deficient (TNF(-/-)) or TNF type 1 receptor-deficient (TNFR1(-/-)) mice display altered P2Y1R-dependent Ca2+ signaling and deficient glutamate release. In mixed hippocampal cultures, the P2Y1R-evoked process occurs in astrocytes but not in neurons or microglia. P2Y1R stimulation induces Ca2+ -dependent glutamate release also from acute hippocampal slices. The process in situ displays characteristics resembling those in cultured astrocytes and is distinctly different from synaptic glutamate release evoked by high K+ stimulation as follows: (a) it is sensitive to cyclooxygenase inhibitors; (b) it is deficient in preparations from TNF(-/-) and TNFR1(-/-) mice; and (c) it is inhibited by the exocytosis blocker bafilomycin A1 with a different time course. No glutamate release is evoked by P2Y1R-dependent stimulation of hippocampal synaptosomes. Taken together, our data identify the coupling of purinergic P2Y1R to glutamate exocytosis and its peculiar TNFalpha- and PG-dependent control, and we strongly suggest that this cascade operates selectively in astrocytes. The identified pathway may play physiological roles in glial-glial and glial-neuronal communication.
Resumo:
Purpose: Complete achromatopsia is a rare autosomal recessive disease due to CNGA3, CNGB3, GNAT2 and PDE6C mutations. We studied a large consanguineous Tunisian family including twelve individuals.Methods: Ophthalmic evaluation included a full clinical examination, color vision testing, optical coherence tomography and electroretinography. Linkage analysis using microsatellite markers flanking CNGA3, CNGB3, GNAT2 and PDE6C genes was performed. Mutations were screened by direct sequencing.Results: In all affected subjects, acuity ranged from 20/50 to 20/200. Fundus examination was normal except for two patients who had respectively 4 mm and 5 mm diameters of peripheral congenital hypertrophy. Likewise retinal layers exploration by OCT revealed no change in the thickness of the central retina. Color Vision with 100 Hue Farnsworth test described a profound color impairment along all three axes of color vision. The haplotype analysis of GNAT2 markers revealed that all affected offspring were homozygous by descent for the four polymorphic markers. The maximum lod score value, 4.33, confirmed the evidence for linkage to the GNAT2 gene.A homozygous novel nonsense mutation R313X was identified segregating with an identical GNAT2 haplotype in all affected subjects. This mutation could interrupt interaction with photoactivated rhodopsin, resulting in a failure of visual transduction. In fact, ERG showed a clearly abolished photopic b-wave and flicker responses with no residual cone function justifying the severe GNAT2 achromatopsia phenotype.Conclusions: This is the first report of the clinical and genetic investigation of complete achromatopsia in North Africa and of the largest family with recessive achromatopsia involving GNAT2, thus providing a unique opportunity for genotype phenotype correlation for this extremely rare condition.