895 resultados para 230117 Operations Research
Resumo:
The complexity of power systems has increased in recent years due to the operation of existing transmission lines closer to their limits, using flexible AC transmission system (FACTS) devices, and also due to the increased penetration of new types of generators that have more intermittent characteristics and lower inertial response, such as wind generators. This changing nature of a power system has considerable effect on its dynamic behaviors resulting in power swings, dynamic interactions between different power system devices, and less synchronized coupling. This paper presents some analyses of this changing nature of power systems and their dynamic behaviors to identify critical issues that limit the large-scale integration of wind generators and FACTS devices. In addition, this paper addresses some general concerns toward high compensations in different grid topologies. The studies in this paper are conducted on the New England and New York power system model under both small and large disturbances. From the analyses, it can be concluded that high compensation can reduce the security limits under certain operating conditions, and the modes related to operating slip and shaft stiffness are critical as they may limit the large-scale integration of wind generation.
Resumo:
[EN] This paper presents a location–price equilibrium problem on a tree. A sufficient condition for having a Nash equilibrium in a spatial competition model that incorporates price, transport, and externality costs is given. This condition implies both competitors are located at the same point, a vertex that is the unique median of the tree. However, this is not an equilibrium necessary condition. Some examples show that not all medians are equilibria. Finally, an application to the Tenerife tram is presented.
Resumo:
This thesis deals with an investigation of combinatorial and robust optimisation models to solve railway problems. Railway applications represent a challenging area for operations research. In fact, most problems in this context can be modelled as combinatorial optimisation problems, in which the number of feasible solutions is finite. Yet, despite the astonishing success in the field of combinatorial optimisation, the current state of algorithmic research faces severe difficulties with highly-complex and data-intensive applications such as those dealing with optimisation issues in large-scale transportation networks. One of the main issues concerns imperfect information. The idea of Robust Optimisation, as a way to represent and handle mathematically systems with not precisely known data, dates back to 1970s. Unfortunately, none of those techniques proved to be successfully applicable in one of the most complex and largest in scale (transportation) settings: that of railway systems. Railway optimisation deals with planning and scheduling problems over several time horizons. Disturbances are inevitable and severely affect the planning process. Here we focus on two compelling aspects of planning: robust planning and online (real-time) planning.
Resumo:
This work presents hybrid Constraint Programming (CP) and metaheuristic methods for the solution of Large Scale Optimization Problems; it aims at integrating concepts and mechanisms from the metaheuristic methods to a CP-based tree search environment in order to exploit the advantages of both approaches. The modeling and solution of large scale combinatorial optimization problem is a topic which has arisen the interest of many researcherers in the Operations Research field; combinatorial optimization problems are widely spread in everyday life and the need of solving difficult problems is more and more urgent. Metaheuristic techniques have been developed in the last decades to effectively handle the approximate solution of combinatorial optimization problems; we will examine metaheuristics in detail, focusing on the common aspects of different techniques. Each metaheuristic approach possesses its own peculiarities in designing and guiding the solution process; our work aims at recognizing components which can be extracted from metaheuristic methods and re-used in different contexts. In particular we focus on the possibility of porting metaheuristic elements to constraint programming based environments, as constraint programming is able to deal with feasibility issues of optimization problems in a very effective manner. Moreover, CP offers a general paradigm which allows to easily model any type of problem and solve it with a problem-independent framework, differently from local search and metaheuristic methods which are highly problem specific. In this work we describe the implementation of the Local Branching framework, originally developed for Mixed Integer Programming, in a CP-based environment. Constraint programming specific features are used to ease the search process, still mantaining an absolute generality of the approach. We also propose a search strategy called Sliced Neighborhood Search, SNS, that iteratively explores slices of large neighborhoods of an incumbent solution by performing CP-based tree search and encloses concepts from metaheuristic techniques. SNS can be used as a stand alone search strategy, but it can alternatively be embedded in existing strategies as intensification and diversification mechanism. In particular we show its integration within the CP-based local branching. We provide an extensive experimental evaluation of the proposed approaches on instances of the Asymmetric Traveling Salesman Problem and of the Asymmetric Traveling Salesman Problem with Time Windows. The proposed approaches achieve good results on practical size problem, thus demonstrating the benefit of integrating metaheuristic concepts in CP-based frameworks.
Resumo:
Nel campo della Ricerca Operativa e dei problemi di ottimizzazione viene presentato un problema, denominato Bus Touring Problem (BTP), che modella una problematica riguardante il carico e l’instradamento di veicoli nella presenza di di vincoli temporali e topologici sui percorsi. Nel BTP, ci si pone il problema di stabilire una serie di rotte per la visita di punti di interesse dislocati geograficamente da parte di un insieme di comitive turistiche, ciascuna delle quali stabilisce preferenze riguardo le visite. Per gli spostamenti sono disponibili un numero limitato di mezzi di trasporto, in generale eterogenei, e di capacitá limitata. Le visite devono essere effettuate rispettando finestre temporali che indicano i periodi di apertura dei punti di interesse; per questi, inoltre, é specificato un numero massimo di visite ammesse. L’obiettivo é di organizzare il carico dei mezzi di trasporto e le rotte intraprese in modo da massimizzare la soddisfazione complessiva dei gruppi di turisti nel rispetto dei vincoli imposti. Viene presentato un algoritmo euristico basato su Tabu Search appositamente ideato e progettato per la risoluzione del BTP. Vengono presentati gli esperimenti effettuati riguardo la messa appunto dei parametri dell'algoritmo su un insieme di problemi di benchmark. Vengono presentati risultati estesi riguardo le soluzioni dei problemi. Infine, vengono presentate considerazioni ed indicazioni di sviluppo futuro in materia.
Resumo:
A central design challenge facing network planners is how to select a cost-effective network configuration that can provide uninterrupted service despite edge failures. In this paper, we study the Survivable Network Design (SND) problem, a core model underlying the design of such resilient networks that incorporates complex cost and connectivity trade-offs. Given an undirected graph with specified edge costs and (integer) connectivity requirements between pairs of nodes, the SND problem seeks the minimum cost set of edges that interconnects each node pair with at least as many edge-disjoint paths as the connectivity requirement of the nodes. We develop a hierarchical approach for solving the problem that integrates ideas from decomposition, tabu search, randomization, and optimization. The approach decomposes the SND problem into two subproblems, Backbone design and Access design, and uses an iterative multi-stage method for solving the SND problem in a hierarchical fashion. Since both subproblems are NP-hard, we develop effective optimization-based tabu search strategies that balance intensification and diversification to identify near-optimal solutions. To initiate this method, we develop two heuristic procedures that can yield good starting points. We test the combined approach on large-scale SND instances, and empirically assess the quality of the solutions vis-à-vis optimal values or lower bounds. On average, our hierarchical solution approach generates solutions within 2.7% of optimality even for very large problems (that cannot be solved using exact methods), and our results demonstrate that the performance of the method is robust for a variety of problems with different size and connectivity characteristics.
Resumo:
For virtually all hospitals, utilization rates are a critical managerial indicator of efficiency and are determined in part by turnover time. Turnover time is defined as the time elapsed between surgeries, during which the operating room is cleaned and preparedfor the next surgery. Lengthier turnover times result in lower utilization rates, thereby hindering hospitals’ ability to maximize the numbers of patients that can be attended to. In this thesis, we analyze operating room data from a two year period provided byEvangelical Community Hospital in Lewisburg, Pennsylvania, to understand the variability of the turnover process. From the recorded data provided, we derive our best estimation of turnover time. Recognizing the importance of being able to properly modelturnover times in order to improve the accuracy of scheduling, we seek to fit distributions to the set of turnover times. We find that log-normal and log-logistic distributions are well-suited to turnover times, although further research must validate this finding. Wepropose that the choice of distribution depends on the hospital and, as a result, a hospital must choose whether to use the log-normal or the log-logistic distribution. Next, we use statistical tests to identify variables that may potentially influence turnover time. We find that there does not appear to be a correlation between surgerytime and turnover time across doctors. However, there are statistically significant differences between the mean turnover times across doctors. The final component of our research entails analyzing and explaining the benefits of introducing control charts as a quality control mechanism for monitoring turnover times in hospitals. Although widely instituted in other industries, control charts are notwidely adopted in healthcare environments, despite their potential benefits. A major component of our work is the development of control charts to monitor the stability of turnover times. These charts can be easily instituted in hospitals to reduce the variabilityof turnover times. Overall, our analysis uses operations research techniques to analyze turnover times and identify manners for improvement in lowering the mean turnover time and thevariability in turnover times. We provide valuable insight into a component of the surgery process that has received little attention, but can significantly affect utilization rates in hospitals. Most critically, an ability to more accurately predict turnover timesand a better understanding of the sources of variability can result in improved scheduling and heightened hospital staff and patient satisfaction. We hope that our findings can apply to many other hospital settings.
Resumo:
Dieser Beitrag beschreibt Unsicherheiten in den Prozessen der Leercontainerlogistik und beinhaltet einen Systematisierungsansatz, der die Akteure bei der operativen Planung unterstützen soll. Weiterhin werden ausgewählte Modellierungskonzepte zur Berücksichtigung von Unsicherheiten vorgestellt und hinsichtlich ihrer Eignung zum Einsatz in mathematischen Optimierungsmodellen für das Leercontainermanagement analysiert. An einem konkreten Fallbeispiel wird der mögliche Einbezug der sogenannten Grey-Zahlen verdeutlicht.
Resumo:
Since 2010, the client base of online-trading service providers has grown significantly. Such companies enable small investors to access the stock market at advantageous rates. Because small investors buy and sell stocks in moderate amounts, they should consider fixed transaction costs, integral transaction units, and dividends when selecting their portfolio. In this paper, we consider the small investor’s problem of investing capital in stocks in a way that maximizes the expected portfolio return and guarantees that the portfolio risk does not exceed a prescribed risk level. Portfolio-optimization models known from the literature are in general designed for institutional investors and do not consider the specific constraints of small investors. We therefore extend four well-known portfolio-optimization models to make them applicable for small investors. We consider one nonlinear model that uses variance as a risk measure and three linear models that use the mean absolute deviation from the portfolio return, the maximum loss, and the conditional value-at-risk as risk measures. We extend all models to consider piecewise-constant transaction costs, integral transaction units, and dividends. In an out-of-sample experiment based on Swiss stock-market data and the cost structure of the online-trading service provider Swissquote, we apply both the basic models and the extended models; the former represent the perspective of an institutional investor, and the latter the perspective of a small investor. The basic models compute portfolios that yield on average a slightly higher return than the portfolios computed with the extended models. However, all generated portfolios yield on average a higher return than the Swiss performance index. There are considerable differences between the four risk measures with respect to the mean realized portfolio return and the standard deviation of the realized portfolio return.