994 resultados para 187-1156B
Resumo:
Karnataka state in southern India supports a globally significant and the country's largest population of the Asian elephant Elephas maximus. A reliable map of Asian elephant distribution and measures of spatial variation in their abundance, both vital needs for conservation and management action, are unavailable not only in Karnataka, but across its global range. Here, we use various data gathered between 2000 and 2015 to map the distribution of elephants in Karnataka at the scale of the smallest forest management unit, the `beat', while also presenting data on elephant dung density for a subset of `elephant beats.' Elephants occurred in 972 out of 2855 forest beats of Karnataka. Sixty percent of these 972 beats and 55% of the forest habitat lay outside notified protected areas (PM), and included lands designated for agricultural production and human dwelling. While median elephant dung density inside protected areas was nearly thrice as much as outside, elephants routinely occurred in or used habitats outside PM where human density, land fraction under cultivation, and the interface between human-dominated areas and forests were greater. Based on our data, it is clear that India's framework for elephant conservation which legally protects the species wherever it occurs, but protects only some of its habitats while being appropriate in furthering their conservation within PM, seriously falters in situations where elephants reside in and/or seasonally use areas outside PAs. Attempts to further elephant conservation in production and dwelling areas have extracted high costs in human, elephant, material and monetary terms in Karnataka. In such settings, conservation planning exercises are necessary to determine where the needs of elephants or humans must take priority over the other, and to achieve that in a manner that is based not only on reliable scientific data but also on a process of public reasoning. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
We report on the results of a country-wide survey of people's perceptions of issues relating to the conservation of biodiversity and ecosystems in India. Our survey, mainly conducted online, yielded 572 respondents, mostly among educated, urban and sub-urban citizens interested in ecological and environmental issues. 3160 ``raw'' questions generated by the survey were iteratively processed by a group of ecologists, environmental and conservation scientists to produce the primary result of this study: a summarized list of 152 priority questions for the conservation of India's biodiversity and ecosystems, which range across 17 broad thematic classes. Of these, three thematic classes-''Policy and Governance'', ``Biodiversity and Endangered Species'' and ``Protection and Conservation''-accounted for the largest number of questions. A comparative analysis of the results of this study with those from similar studies in other regions brought out interesting regional differences in the thematic classes of questions that were emphasized and suggest that local context plays a large role in determining emergent themes. We believe that the ready list of priority issues generated by this study can be a useful guiding framework for conservation practitioners, researchers, citizens, policy makers and funders to focus their resources and efforts in India's conservation research, action and funding landscape. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The K-user multiple input multiple output (MIMO) Gaussian symmetric interference channel where each transmitter has M antennas and each receiver has N antennas is studied from a generalized degrees of freedom (GDOF) perspective. An inner bound on the GDOF is derived using a combination of techniques such as treating interference as noise, zero forcing (ZF) at the receivers, interference alignment (IA), and extending the Han-Kobayashi (HK) scheme to K users, as a function of the number of antennas and the log INR/log SNR level. Several interesting conclusions are drawn from the derived bounds. It is shown that when K > N/M + 1, a combination of the HK and IA schemes performs the best among the schemes considered. When N/M < K <= N/M + 1, the HK-scheme outperforms other schemes and is found to be GDOF optimal in many cases. In addition, when the SNR and INR are at the same level, ZF-receiving and the HK-scheme have the same GDOF performance.
Resumo:
Southern India is a collage of numerous crustal fragments formed since the Archean (2500 Ma ago) and reworked several times during the geological history. A close look at these terrains provides a window to understand the crustal evolutionary processes experienced by the continental crust in the past, such as crustal growth (formation of crust through addition of new magma) and crustal reworking (modification of an already existing crust). Here we discuss the evolutionary history of such a crustal fragment from the Southern Granulite Terrain (SGT) in peninsular India, namely Kolli-massif. Geology, structural deformation through time, and the implications in crustal assembly of southern India are exponded.
Resumo:
Subtle concurrency errors in multithreaded libraries that arise because of incorrect or inadequate synchronization are often difficult to pinpoint precisely using only static techniques. On the other hand, the effectiveness of dynamic race detectors is critically dependent on multithreaded test suites whose execution can be used to identify and trigger races. Usually, such multithreaded tests need to invoke a specific combination of methods with objects involved in the invocations being shared appropriately to expose a race. Without a priori knowledge of the race, construction of such tests can be challenging. In this paper, we present a lightweight and scalable technique for synthesizing precisely these kinds of tests. Given a multithreaded library and a sequential test suite, we describe a fully automated analysis that examines sequential execution traces, and produces as its output a concurrent client program that drives shared objects via library method calls to states conducive for triggering a race. Experimental results on a variety of well-tested Java libraries yield 101 synthesized multithreaded tests in less than four minutes. Analyzing the execution of these tests using an off-the-shelf race detector reveals 187 harmful races, including several previously unreported ones.
Resumo:
The current work reports quantitative OH species concentration in the cavity of a trapped vortex combustor (TVC) in the context of mixing and flame stabilization studies using both syngas and methane fuels. Planar laser induced fluorescence (PLIF) measurements of OH radical obtained using a Nd: YAG pumped dye laser are quantified using a flat flame McKenna burner. The momentum flux ratio (MFR), defined as the ratio of the cavity fuel jet momentum to that of the guide vane air stream, is observed to be a key governing parameter. At high MFRs similar to 4.5, the flame front is observed to form at the interface of the fuel jet and the air jet stream. This is substantiated by velocity vector field measurements. For syngas, as the MFR is lowered to similar to 0.3, the fuel-air mixing increases and a flame front is formed at the bottom and downstream edge of the cavity where a stratified charge is present. This trend is observed for different velocities at similar equivalence ratios. In case of methane combustion in the cavity, where the MFRs employed are extremely low at similar to 0.01, a different mechanism is observed. A fuel-rich mixture is now observed at the center of the cavity and this mixture undergoes combustion. On further increase of the cavity equivalence ratio, the rich mixture exceeds the flammability limit and forms a thin reaction zone at the interface with air stream. As a consequence, a shear layer flame at the top of the cavity interface with the mainstream is also observed. The equivalence ratio in the cavity also determines the combustion characteristics in the case of fuel-air mixtures that are formed as a result of the mixing. Overall, flame stabilization mechanisms have been proposed, which account for the wide range of MFRs and premixing in the mainstream as well.
Resumo:
Identifying translations from comparable corpora is a well-known problem with several applications, e.g. dictionary creation in resource-scarce languages. Scarcity of high quality corpora, especially in Indian languages, makes this problem hard, e.g. state-of-the-art techniques achieve a mean reciprocal rank (MRR) of 0.66 for English-Italian, and a mere 0.187 for Telugu-Kannada. There exist comparable corpora in many Indian languages with other ``auxiliary'' languages. We observe that translations have many topically related words in common in the auxiliary language. To model this, we define the notion of a translingual theme, a set of topically related words from auxiliary language corpora, and present a probabilistic framework for translation induction. Extensive experiments on 35 comparable corpora using English and French as auxiliary languages show that this approach can yield dramatic improvements in performance (e.g. MRR improves by 124% to 0.419 for Telugu-Kannada). A user study on WikiTSu, a system for cross-lingual Wikipedia title suggestion that uses our approach, shows a 20% improvement in the quality of titles suggested.
Resumo:
The otoliths (N = 12) of freshwater invasive species tilapia (Tilapia mossambicus) collected from two water bodies located at Kolkata and Bangalore, India, were analyzed for stable isotopes (delta 18O, delta 14C) and major and trace elements in order to assess the suitability of using otoliths as a tracer of aquatic environmental changes. The stable isotope analysis was done using the dual inlet system of a Finnigan-MAT 253 isotope ratio mass spectrometer (Thermo-Fisher, Bremen, Germany). Concentrations of major and trace elements were determined using a Thermo X-Series II quadrupole mass spectrometer. The stable isotope composition in tilapia otolith samples from Bangalore and Kolkata water bodies are quite good agreeing with that of the respective lake/pond and rain water. Elemental composition revealed in a pattern of Ca > Fe > Na > Sr > K > Ba > Cr > Mg > As > Mn > Zn > Co > Cu > Cd > Pb. The otoliths from Kolkata pond water are more enriched in Ba, Zn, Pb, Mn, Se, Cu, Zn, Cd, and Ni whereas Cr and As were found to be higher in otolith samples from Bangalore lake. The enrichment factor (EF) values of Cr were higher for both the sampling location in comparison with other metals, although all the studied metals exhibited EF values >1. The PCA shows clustering of metals in the otolith which are related either with the metabolic and physiological attributes or waterborne source. The study demonstrated the potential of stable isotope techniques to distinguish otolith specimens from varied climatic zone, while elemental composition recorded the quality of water at both the locations. The role of climate driving the quality of water can be understood by detailed and continuous monitoring of otolith specimens in the future. Future method allows reconstruction of climate and water quality from old specimens from field exposures or museum collection.
Resumo:
Desiccated coconut industries (DCI) create various intermediates from fresh coconut kernel for cosmetic, pharmaceutical and food industries. The mechanized and non-mechanized DCI process between 10,000 and 100,000 nuts/day to discharge 6-150 m(3) of malodorous waste water leading to a discharge of 2646642 kg chemical oxygen demand (COD) daily. In these units, three main types of waste water streams are coconut kernel water, kernel wash water and virgin oil waste water. The effluent streams contain lipids (1-55 g/l), suspended solids (6-80 g/l) and volatile fatty acids (VFA) at concentrations that are inhibitory to anaerobic bacteria. Coconut water contributes to 20-50 % of the total volume and 50-60 % of the total organic loads and causes higher inhibition of anaerobic bacteria with an initial lag phase of 30 days. The lagooning method of treatment widely adopted failed to appreciably treat the waste water and often led to the accumulation of volatile fatty acids (propionic acid) along with long-chain unsaturated free fatty acids. Biogas generation during biological methane potential (BMP) assay required a 15-day adaptation time, and gas production occurred at low concentrations of coconut water while the other two streams did not appear to be inhibitory. The anaerobic bacteria can mineralize coconut lipids at concentrations of 175 mg/l; however; they are severely inhibited at a lipid level of = 350 mg/g bacterial inoculum. The modified Gompertz model showed a good fit with the BMP data with a simple sigmoid pattern. However, it failed to fit experimental BMP data either possessing a longer lag phase and/or diauxic biogas production suggesting inhibition of anaerobic bacteria.
Resumo:
We demonstrate a non-contact technique to apply calibrated and localized forces in the micro-Newton to milli-Newton range using an air microjet. An electromagnetically actuated diaphragm controlled by a signal generator is used to generate the air microjet. With a nozzle diameter of 150 mu m, the microjet diameter was maintained to a maximum of 1 mm at a distance of 5 mm from the nozzle. The force generated by the microjet was measured using a commercial force sensor to determine the velocity profile of the jet. Axial flow velocities of up to 25 m s(-1) were obtained at distances as long as 6 mm. The microjet exerted a force up to 1 mu N on a poly dimethyl siloxane (PDMS) micropillar (50 mu m in diameter, 157 mu m in height) and 415 mu N on a PDMS membrane (3 mm in diameter, 28 mu m thick). We also demonstrate that from a distance of 6 mm our microjet can exert a peak pressure of 187 Pa with a total force of about 84 mu N on a flat surface with 8 V operating voltage. Out of the cleanroom fabrication and robust design make this system cost effective and durable.
Resumo:
Homogeneous temperature regions are necessary for use in hydrometeorological studies. The regions are often delineated by analysing statistics derived from time series of maximum, minimum or mean temperature, rather than attributes influencing temperature. This practice cannot yield meaningful regions in data-sparse areas. Further, independent validation of the delineated regions for homogeneity in temperature is not possible, as temperature records form the basis to arrive at the regions. To address these issues, a two-stage clustering approach is proposed in this study to delineate homogeneous temperature regions. First stage of the approach involves (1) determining correlation structure between observed temperature over the study area and possible predictors (large-scale atmospheric variables) influencing the temperature and (2) using the correlation structure as the basis to delineate sites in the study area into clusters. Second stage of the approach involves analysis on each of the clusters to (1) identify potential predictors (large-scale atmospheric variables) influencing temperature at sites in the cluster and (2) partition the cluster into homogeneous fuzzy temperature regions using the identified potential predictors. Application of the proposed approach to India yielded 28 homogeneous regions that were demonstrated to be effective when compared to an alternate set of 6 regions that were previously delineated over the study area. Intersite cross-correlations of monthly maximum and minimum temperatures in the existing regions were found to be weak and negative for several months, which is undesirable. This problem was not found in the case of regions delineated using the proposed approach. Utility of the proposed regions in arriving at estimates of potential evapotranspiration for ungauged locations in the study area is demonstrated.
Resumo:
The derivation of a quasi-geostrophic system from the rotating shallow-water equations on a midlatitude -plane coupled with moisture is presented. Condensation is prescribed to occur whenever the moisture at a point exceeds a prescribed saturation value. It is seen that a slow condensation time-scale is required to obtain a consistent set of equations at leading order. Further, since the advecting wind fields are geostrophic, changes in moisture (and hence precipitation) occur only via non-divergent mechanisms. Following observations, a saturation profile with gradients in the zonal and meridional directions is prescribed. A purely meridional gradient has the effect of slowing down the dry Rossby waves, through a reduction in the equivalent gradient' of the background potential vorticity. A large-scale unstable moist mode results on the inclusion of a zonal gradient by itself, or in conjunction with a meridional moisture gradient. For gradients that are are representative of the atmosphere, the most unstable moist mode propagates zonally in the direction of increasing moisture, matures over an intraseasonal time-scale and has small phase speed.
Resumo:
In this paper, discussions are focused on the growth of a nucleated void in a viscoelastic material. The in situ tensile tests of specimens made of high-density polyethylene, filled with spherical glass beads (HDPE/GB) are carried out under SEM. The experimental result indicates that the microvoid nucleation is induced by the partially interfacial debonding of particles. By means of the Laplace transform and the Eshelby's equivalent inclusion method, a new analytical expression of the void strain at different nucleation times is derived. It can be seen that the strain of the nucleated void depends not only on the remote strain history, but also on the nucleation time. This expression is also illustrated by numerical examples, and is found to be of great usefulness in the study of damage evolution in viscoelastic materials.
Resumo:
针对广泛应用于超燃冲压发动机的吸热碳氢燃料,简要介绍了用于模拟燃料热物理特性的替代燃料方法和广义对应状态法则.以大庆RP-3航空煤油为例,选择了一个由49%(摩尔比)正十烷,44%1,3,5-三甲基环己烷以及7%正丙基苯组成的替代煤油用来模拟RP-3航空煤油进行热物理特性研究,并采用广义对应状态法则对替代煤油热力学和输运特性进行了数值研究.在此基础上,提出了预测超临界态流体通过音速喷管流量的新方法并得到了实验验证.
Resumo:
While it is well known that it is possible to determine the effective flexoelectric coefficient of nematic liquid crystals using hybrid cells [1], this technique can be difficult due to the necessity of using a D.C. field. We have used a second method[2], requiring an A.C. field, to determine this parameter and here we compare the two techniques. The A.C. method employs the linear flexoelectrically induced linear electro-optic switching mechanism observed in chiral nematics. In order to use this second technique a chiral nematic phase is induced in an achiral nematic by the addition of a small amount of chiral additive (∼3% concentration w/w) to give helix pitch lengths of typically 0.5-1.0 μm. We note that the two methods can be used interchangeably, since they produce similar results, and we conclude with a discussion of their relative merits.