870 resultados para 1011


Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: Photodynamic therapy with 5-aminolevulinic acid (5-ALA-PDT) exerts cell type specific effects on target cells. Since chondrocytes were found to be more resistant than osteoblasts to 5-ALA-PDT, the pre-treatment of osteochondral grafts with 5-ALA-PDT may represent a means to devitalize the osseous portion while maintaining functional cartilage. The present study was designed to determine the effects of 5-ALA-PDT in vitro on cell populations residing in skeletal tissues. METHODS: Osteoblasts, fibroblasts, bone marrow cells, and dendritic cells were incubated with 0.5 mM 5-ALA for 4 h. Protoporphyrin IX (PpIX) accumulation and after exposure to light cellular functions were assessed for up to 6 days. RESULTS: Accumulation of PpIX reached a plateau at 0.5 mM in osteoblasts, fibroblasts, and dendritic cells, and at 2.0 mM in bone marrow cells. At 0.5 mM 5-ALA, similar responses to illumination were observed in all cells with a survival rate of less than 12% at a light dose of 20 J/cm(2). The function of osteoblasts (proliferation, levels of mRNA encoding collagen type I, alkaline phosphatase activity) and fibroblasts (proliferation, levels of mRNAs encoding collagens type I and III) was not affected, when the cells were treated with 5-ALA and light doses of < or =10 J/cm(2). Paralleling the reduction of viable cells after 5-ALA-PDT, the capacity of dendritic cells to stimulate T cells in a mixed leukocyte reaction decreased to 4+/-2% at 20 J/cm(2). CONCLUSION: The investigated cell types were sensitive to 5-ALA-PDT and the residual cell debris did not elicit an allogenic response. These findings, together with the resistance of chondrocytes to 5-ALA-PDT, encourage the further investigation of this protocol in the pretreatment of osteochondral allografts.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biofuels are alternative fuels that have the promise of reducing reliance on imported fossil fuels and decreasing emission of greenhouse gases from energy consumption. This thesis analyses the environmental impacts focusing on the greenhouse gas (GHG) emissions associated with the production and delivery of biofuel using the new Integrated Hydropyrolysis and Hydroconversion (IH2) process. The IH2 process is an innovative process for the conversion of woody biomass into hydrocarbon liquid transportation fuels in the range of gasoline and diesel. A cradle-to-grave life cycle assessment (LCA) was used to calculate the greenhouse gas emissions associated with diverse feedstocks production systems and delivery to the IH2 facility plus producing and using these new renewable liquid fuels. The biomass feedstocks analyzed include algae (microalgae), bagasse from a sugar cane-producing locations such as Brazil or extreme southern US, corn stover from Midwest US locations, and forest feedstocks from a northern Wisconsin location. The life cycle greenhouse gas (GHG) emissions savings of 58%–98% were calculated for IH2 gasoline and diesel production and combustion use in vehicles compared to fossil fuels. The range of savings is due to different biomass feedstocks and transportation modes and distances. Different scenarios were conducted to understand the uncertainties in certain input data to the LCA model, particularly in the feedstock production section, the IH2 biofuel production section, and transportation sections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although considerable work has been undertaken by some prominent geologists, the best known of which is that of Paul Billingsley and J. A. Grimes', in investigating the ore deposits of the Boulder Batholith and surrounding area, there has not been any complete microscopic investigation of these deposits, as a whole, published in the literature. With this in mind it was suggested to the writer by Professor Paul A. Schafer, of the Montana School of Mines, that a microscopic study of the ores of this region would be a worthwhile geologic problem. It was thought that the mineral association and the mode of mineral occurrence might afford methods of classify­ing these deposits so that they could be correlated with the age relationships worked out by Billingsley and Grimes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents a 1-D process scale model used to investigate the chemical dynamics and temporal variability of nitrogen oxides (NOx) and ozone (O3) within and above snowpack at Summit, Greenland for March-May 2009 and estimates surface exchange of NOx between the snowpack and surface layer in April-May 2009. The model assumes the surface of snowflakes have a Liquid Like Layer (LLL) where aqueous chemistry occurs and interacts with the interstitial air of the snowpack. Model parameters and initialization are physically and chemically representative of snowpack at Summit, Greenland and model results are compared to measurements of NOx and O3 collected by our group at Summit, Greenland from 2008-2010. The model paired with measurements confirmed the main hypothesis in literature that photolysis of nitrate on the surface of snowflakes is responsible for nitrogen dioxide (NO2) production in the top ~50 cm of the snowpack at solar noon for March – May time periods in 2009. Nighttime peaks of NO2 in the snowpack for April and May were reproduced with aqueous formation of peroxynitric acid (HNO4) in the top ~50 cm of the snowpack with subsequent mass transfer to the gas phase, decomposition to form NO2 at nighttime, and transportation of the NO2 to depths of 2 meters. Modeled production of HNO4 was hindered in March 2009 due to the low production of its precursor, hydroperoxy radical, resulting in underestimation of nighttime NO2 in the snowpack for March 2009. The aqueous reaction of O3 with formic acid was the major sync of O3 in the snowpack for March-May, 2009. Nitrogen monoxide (NO) production in the top ~50 cm of the snowpack is related to the photolysis of NO2, which underrepresents NO in May of 2009. Modeled surface exchange of NOx in April and May are on the order of 1011 molecules m-2 s-1. Removal of measured downward fluxes of NO and NO2 in measured fluxes resulted in agreement between measured NOx fluxes and modeled surface exchange in April and an order of magnitude deviation in May. Modeled transport of NOx above the snowpack in May shows an order of magnitude increase of NOx fluxes in the first 50 cm of the snowpack and is attributed to the production of NO2 during the day from the thermal decomposition and photolysis of peroxynitric acid with minor contributions of NO from HONO photolysis in the early morning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this issue...Debate Team, Chancellor M. A. Brannon, Hotel Finlen, Butte, Montana, Ore Diggers, Pathe News Pictorial Service, Coach McAuliffe

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Presentation by Dr. Stephen Ditchkoff.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this issue...Oredigger football, American Chemical Society, Student Union Building, Virginia City, Butte, Montana, Tom Minette, Professor Ruggles

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Montana Public Radio Commentary by Evan Barrett. Published newspaper columns written by Evan Barrett on this topic, which vary somewhat in content from this commentary, appeared in the following publications: Havre Daily News, January 31, 2014 Missoulian, February 7, 2014 Ravalli Republic, February 12, 2014 Montana Standard, February 15, 2014 Helena Independent Record, April 23, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-uniformity of steps within a flight is a major risk factor for falls. Guidelines and requirements for uniformity of step risers and tread depths assume the measurement system provides precise dimensional values. The state-of-the-art measurement system is a relatively new method, known as the nosing-to-nosing method. It involves measuring the distance between the noses of adjacent steps and the angle formed with the horizontal. From these measurements, the effective riser height and tread depth are calculated. This study was undertaken for the purpose of evaluating the measurement system to determine how much of total measurement variability comes from the step variations versus that due to repeatability and reproducibility (R&R) associated with the measurers. Using an experimental design quality control professionals call a measurement system experiment, two measurers measured all steps in six randomly selected flights, and repeated the process on a subsequent day. After marking each step in a flight in three lateral places (left, center, and right), the measurers took their measurement. This process yielded 774 values of riser height and 672 values of tread depth. Results of applying the Gage R&R ANOVA procedure in Minitab software indicated that the R&R contribution to riser height variability was 1.42%; and to tread depth was 0.50%. All remaining variability was attributed to actual step-to-step differences. These results may be compared with guidelines used in the automobile industry for measurement systems that consider R&R less than 1% as an acceptable measurement system; and R&R between 1% and 9% as acceptable depending on the application, the cost of the measuring device, cost of repair, or other factors.