993 resultados para $PSaul$lIsrael, König


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Der Palast der Republik war ein ungeliebtes, aber authentisches Denkmal der DDR-Geschichte. Nach der Wettbewerbsentscheidung vom November 2008 ist nun klar, dass an seiner Stelle eine Kopie des Berliner Stadtschlosses entstehen wird. Der hier vorgestellte Entwurf von Stefan Haupt illustriert, dass es möglich gewesen wäre, den authentischen DDR-Bau in seiner Substanz zu erhalten, ohne auf eine städtebaulich sinnvolle Teilrekonstruktion des Stadtschlosses zu verzichten.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brain electrical microstates represent spatial configurations of scalp recorded brain electrical activity and are considered to be the basic elements of stepwise processing of information in the brain. In the present study, the hypothesis of a temporo-limbic dysfunction in panic disorder (PD) was tested by investigating the topographic descriptors of brain microstates, in particular the one corresponding to the Late Positive Complex (LPC), an event-related potential (ERP) component with generators in these regions. ERPs were recorded in PD patients and matched healthy subjects during a target detection task, in a central (CC) and a lateral condition (LC). In the CC, a leftward shift of the LPC microstate positive centroid was observed in the patients with PD versus the healthy control subjects. In the LC, the topographic descriptor of the first microstate showed a rightward shift, while those of both the second and the fourth microstate, corresponding to the LPC, revealed a leftward shift in the PD patients versus the healthy control subjects. These findings indicate an overactivation of the right hemisphere networks involved in early visual processing and a hypoactivation of the right hemisphere circuits involved in LPC generators in PD. In line with this interpretation, the abnormal topography of the LPC microstate, observed in the CC, was associated with a worse performance on a test exploring right temporo-hippocampal functioning. Topographical abnormalities found for the LPC microstate in the LC were associated with a higher number of panic attacks, suggesting a pathogenetic role of the right temporo-hippocampal dysfunction in PD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The origin of auditory hallucinations, which are one of the core symptoms of schizophrenia, is still a matter of debate. It has been hypothesized that alterations in connectivity between frontal and parietotemporal speech-related areas might contribute to the pathogenesis of auditory hallucinations. These networks are assumed to become dysfunctional during the generation and monitoring of inner speech. Magnetic resonance diffusion tensor imaging is a relatively new in vivo method to investigate the directionality of cortical white matter tracts. OBJECTIVE: To investigate, using diffusion tensor imaging, whether previously described abnormal activation patterns observed during auditory hallucinations relate to changes in structural interconnections between the frontal and parietotemporal speech-related areas. METHODS: A 1.5 T magnetic resonance scanner was used to acquire twelve 5-mm slices covering the Sylvian fissure. Fractional anisotropy was assessed in 13 patients prone to auditory hallucinations, in 13 patients without auditory hallucinations, and in 13 healthy control subjects. Structural magnetic resonance imaging was conducted in the same session. Based on an analysis of variance, areas with significantly different fractional anisotropy values between groups were selected for a confirmatory region of interest analysis. Additionally, descriptive voxel-based t tests between the groups were computed. RESULTS: In patients with hallucinations, we found significantly higher white matter directionality in the lateral parts of the temporoparietal section of the arcuate fasciculus and in parts of the anterior corpus callosum compared with control subjects and patients without hallucinations. Comparing patients with hallucinations with patients without hallucinations, we found significant differences most pronounced in the left hemispheric fiber tracts, including the cingulate bundle. CONCLUSION: Our findings suggest that during inner speech, the alterations of white matter fiber tracts in patients with frequent hallucinations lead to abnormal coactivation in regions related to the acoustical processing of external stimuli. This abnormal activation may account for the patients' inability to distinguish self-generated thoughts from external stimulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural and functional connectivity are intrinsic properties of the human brain and represent the amount of cognitive capacities of individual subjects. These connections are modulated due to development, learning, and disease. Momentary adaptations in functional connectivity alter the structural connections, which in turn affect the functional connectivity. Thus, structural and functional connectivity interact on a broad timescale. In this study, we aimed to explore distinct measures of connectivity assessed by functional magnetic resonance imaging and diffusion tensor imaging and their association to the dominant electroencephalogram oscillatory property at rest: the individual alpha frequency (IAF). We found that in 21 healthy young subjects, small intraindividual temporal IAF fluctuations were correlated to increased blood oxygenation level-dependent signal in brain areas associated to working memory functions and to the modulation of attention. These areas colocalized with functionally connected networks supporting the respective functions. Furthermore, subjects with higher IAF show increased fractional anisotropy values in fascicles connecting the above-mentioned areas and networks. Hence, due to a multimodal approach a consistent functionally and structurally connected network related to IAF was observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study shows that different neural activity during mental imagery and abstract mentation can be assigned to well-defined steps of the brain's information-processing. During randomized visual presentation of single, imagery-type and abstract-type words, 27 channel event-related potential (ERP) field maps were obtained from 25 subjects (sequence-divided into a first and second group for statistics). The brain field map series showed a sequence of typical map configurations that were quasi-stable for brief time periods (microstates). The microstates were concatenated by rapid map changes. As different map configurations must result from different spatial patterns of neural activity, each microstate represents different active neural networks. Accordingly, microstates are assumed to correspond to discrete steps of information-processing. Comparing microstate topographies (using centroids) between imagery- and abstract-type words, significantly different microstates were found in both subject groups at 286–354 ms where imagery-type words were more right-lateralized than abstract-type words, and at 550–606 ms and 606–666 ms where anterior-posterior differences occurred. We conclude that language-processing consists of several, well-defined steps and that the brain-states incorporating those steps are altered by the stimuli's capacities to generate mental imagery or abstract mentation in a state-dependent manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a program (Ragu; Randomization Graphical User interface) for statistical analyses of multichannel event-related EEG and MEG experiments. Based on measures of scalp field differences including all sensors, and using powerful, assumption-free randomization statistics, the program yields robust, physiologically meaningful conclusions based on the entire, untransformed, and unbiased set of measurements. Ragu accommodates up to two within-subject factors and one between-subject factor with multiple levels each. Significance is computed as function of time and can be controlled for type II errors with overall analyses. Results are displayed in an intuitive visual interface that allows further exploration of the findings. A sample analysis of an ERP experiment illustrates the different possibilities offered by Ragu. The aim of Ragu is to maximize statistical power while minimizing the need for a-priori choices of models and parameters (like inverse models or sensors of interest) that interact with and bias statistics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brain processing of grammatical word class was studied analyzing event-related potential (ERP) brain fields. Normal subjects observed a randomized sequence of single German nouns and verbs on a computer screen, while 20-channel ERP field map series were recorded separately for both word classes. Spatial microstate analysis was applied, based on the observation that series of ERP maps consist of epochs of quasi-stable map landscapes and based on the rationale that different map landscapes must have been generated by different neural generators and thus suggest different brain functions. Space-oriented segmentation of the mean map series identified nine successive, different functional microstates, i.e., steps of brain information processing characterized by quasi-stable map landscapes. In the microstate from 116 to 172 msec, noun-related maps differed significantly from verb-related maps along the left–right axis. The results indicate that different neural populations represent different grammatical word classes in language processing, in agreement with clinical observations. This word class differentiation as revealed by the spatial–temporal organization of neural activity occurred at a time after word input compatible with speed of reading.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Momentary brain electric field configurations are manifestations of momentary global functional states of the brain. Field configurations tend to persist over some time in the sub-second range (“microstates”) and concentrate within few classes of configurations. Accordingly, brain field data can be reduced efficiently into sequences of re-occurring classes of brain microstates, not overlapping in time. Different configurations must have been caused by different active neural ensembles, and thus different microstates assumedly implement different functions. The question arises whether the aberrant schizophrenic mentation is associated with specific changes in the repertory of microstates. Continuous sequences of brain electric field maps (multichannel EEG resting data) from 9 neuroleptic-naive, first-episode, acute schizophrenics and from 18 matched controls were analyzed. The map series were assigned to four individual microstate classes; these were tested for differences between groups. One microstate class displayed significantly different field configurations and shorter durations in patients than controls; degree of shortening correlated with severity of paranoid symptomatology. The three other microstate classes showed no group differences related to psychopathology. Schizophrenic thinking apparently is not a continuous bias in brain functions, but consists of intermittent occurrences of inappropriate brain microstates that open access to inadequate processing strategies and context information

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Frequency-transformed EEG resting data has been widely used to describe normal and abnormal brain functional states as function of the spectral power in different frequency bands. This has yielded a series of clinically relevant findings. However, by transforming the EEG into the frequency domain, the initially excellent time resolution of time-domain EEG is lost. The topographic time-frequency decomposition is a novel computerized EEG analysis method that combines previously available techniques from time-domain spatial EEG analysis and time-frequency decomposition of single-channel time series. It yields a new, physiologically and statistically plausible topographic time-frequency representation of human multichannel EEG. The original EEG is accounted by the coefficients of a large set of user defined EEG like time-series, which are optimized for maximal spatial smoothness and minimal norm. These coefficients are then reduced to a small number of model scalp field configurations, which vary in intensity as a function of time and frequency. The result is thus a small number of EEG field configurations, each with a corresponding time-frequency (Wigner) plot. The method has several advantages: It does not assume that the data is composed of orthogonal elements, it does not assume stationarity, it produces topographical maps and it allows to include user-defined, specific EEG elements, such as spike and wave patterns. After a formal introduction of the method, several examples are given, which include artificial data and multichannel EEG during different physiological and pathological conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of the immediate prestimulus EEG microstate (sub-second epoch of stable topography/map landscape) on the map landscape of visually evoked 47-channel event-related potential (ERP) microstates was examined using the frequent, non-target stimuli of a cognitive paradigm (12 volunteers). For the two most frequent prestimulus microstate classes (oriented left anterior-right posterior and right anterior-left posterior), ERP map series were selectively averaged. The post-stimulus ERP grand average map series was segmented into microstates; 10 were found. The centroid locations of positive and negative map areas were extracted as landscape descriptors. Significant differences (MANOVAs and t-tests) between the two prestimulus classes were found in four of the ten ERP microstates. The relative orientation of the two ERP microstate classes was the same as prestimulus in some ERP microstates, but reversed in others. — Thus, brain electric microstates at stimulus arrival influence the landscapes of the post-stimulus ERP maps and therefore, information processing; prestimulus microstate effects differed for different post-stimulus ERP microstates.