955 resultados para zeros of polynomials


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Constacyclic codes with one and the same generator polynomial and distinct length are considered. We give a generalization of the previous result of the first author [4] for constacyclic codes. Suitable maps between vector spaces determined by the lengths of the codes are applied. It is proven that the weight distributions of the coset leaders don’t depend on the word length, but on generator polynomials only. In particular, we prove that every constacyclic code has the same weight distribution of the coset leaders as a suitable cyclic code.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we investigate the Boolean functions with maximum essential arity gap. Additionally we propose a simpler proof of an important theorem proved by M. Couceiro and E. Lehtonen in [3]. They use Zhegalkin’s polynomials as normal forms for Boolean functions and describe the functions with essential arity gap equals 2. We use to instead Full Conjunctive Normal Forms of these polynomials which allows us to simplify the proofs and to obtain several combinatorial results concerning the Boolean functions with a given arity gap. The Full Conjunctive Normal Forms are also sum of conjunctions, in which all variables occur.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is proved that if the increasing sequence {kn} n=0..∞ n=0 of nonnegative integers has density greater than 1/2 and D is an arbitrary simply connected subregion of C\R then the system of Hermite associated functions Gkn(z) n=0..∞ is complete in the space H(D) of complex functions holomorphic in D.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

∗ Partially supported by Grant MM-428/94 of MESC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematics Subject Classification: 33C45.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 33E12, 33C20.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematics Subject Class.: 33C10,33D60,26D15,33D05,33D15,33D90

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 12D10.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 13P05, 14M15, 14M17, 14L30.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 11T06, 13P10.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 41A05.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 12D10.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 20F55, 13F20; Secondary 14L30.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 30C40, 30D50, 30E10, 30E15, 42C05.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary: 42A05. Secondary: 42A82, 11N05.