871 resultados para wireless network coding
Resumo:
Mobile and wireless networks have long exploited mobility predictions, focused on predicting the future location of given users, to perform more efficient network resource management. In this paper, we present a new approach in which we provide predictions as a probability distribution of the likelihood of moving to a set of future locations. This approach provides wireless services a greater amount of knowledge and enables them to perform more effectively. We present a framework for the evaluation of this new type of predictor, and develop 2 new predictors, HEM and G-Stat. We evaluate our predictors accuracy in predicting future cells for mobile users, using two large geolocation data sets, from MDC [11], [12] and Crawdad [13]. We show that our predictors can successfully predict with as low as an average 2.2% inaccuracy in certain scenarios.
Resumo:
This paper presents the study and experimental tests for the viability analysis of using multiple wireless technologies in urban traffic light controllers in a Smart City environment. Communication drivers, different types of antennas, data acquisition methods and data processing for monitoring the network are presented. The sensors and actuators modules are connected in a local area network through two distinct low power wireless networks using both 868 MHz and 2.4 GHz frequency bands. All data communications using 868 MHz go through a Moteino. Various tests are made to assess the most advantageous features of each communication type. The experimental results show better range for 868 MHz solutions, whereas the 2.4 GHz presents the advantage of self-regenerating the network and mesh. The different pros and cons of both communication methods are presented.
Resumo:
Wireless Power Transfer has become a promising technology to overcome the limits of wired solutions. Within this framework, the objective of this thesis is to study a WPT link at millimeter waves involving a particular type of antenna working in the radiative near-field, known as Bessel Beam (BB) Launcher. This antenna has been chosen for its peculiarity of generating a Bessel Beam which is by nature non-diffractive, showing good focusing and self-healing capabilities. In particular, a Bull-Eye Leaky Wave Antenna is designed and analysed, fed by a loop antenna and resonating at approximately 30 GHz. The structure excites a Hybrid-TE mode showing zeroth-order Bessel function over the z-component of the magnetic field. The same antenna is designed with two different dimensions, showing good wireless power transport properties. The link budgets obtained for different configurations are reported. With the aim of exploiting BB Launchers in wearable applications, a further analysis on the receiving part is conducted. For WPT wearable or implantable devices a reduced dimension of the receiver system must be considered. Therefore, an electrically large loop antenna in planar technology is modified, inserting phase shifters in order to increase the intensity of the magnetic field in its interrogation zone. This is fundamental when a BB Launcher is involved as transmitter. The loop antenna, in reception, shows a further miniaturization level since it is built such that its interrogation zone corresponds to the main beam dimension of transmitting BB Launcher. The link budget is evaluated with the new receiver showing comparable results with respect to previous configurations, showing an efficient WPT link for near-field focusing. Finally, a matching network and a full-wave rectifying circuit are attached to two of the different receiving systems considered. Further analysis will be carried out about the robustness of the square loop over biological tissues.
Resumo:
Cutaneous melanoma (CM) is a potentially lethal form of skin cancer and its most important histopathologic factor for staging is Breslow thickness (BT). Its correct determination is fundamental for pathologists. A deeper understanding of the molecular processes guiding CM pathogenesis could improve diagnosis, treatment and prognosis. MicroRNAs (miRNAs) play a key role in CM biology. The firs aim was to investigate miRNA expression in reference to BT assessment. We found that the combined miRNA expression of miR-21-5p and miR-146a-5p above or below 1.5 was significantly associated with overall survival and successfully identified all superficially spreading melanoma (SSM) patients with relapsing suggesting that the combined assessment of these miRNAs expression could aid in SSM staging. Secondly, we focus on multiple primary melanoma (MPM) patients, which develop multiple primary melanomas in their lifetime, and represent a model of high-risk CM occurrence. We explored the miRNome of single CM and MPM: CM and MPM present several dysregulated miRNAs, including key miRNAs involved in epithelial-mesenchymal transition. A different miRNA profile was observed between 1st and 2nd melanoma from the same patient. MiRNA target analysis revealed a more differentiated and less invasive status of MPMs compared to CMs. This characterization of the miRNA regulatory network of MPMs highlights molecular features differentiating this subtype from CM. Recently, NGS experiments revealed the existence of miRNA variants (isomiRs) with different length and sequence. We identified a shorter 3’isoform as tenfold over-represented compared to the canonical form of miR-125a-5p. Target analysis revealed that miRNA shortening could change the pattern of target gene regulation. Finally, we study miRNA and isomiR dysregulation in benign nevi (BN) and CM and in CM and melanoma metastasis. The reported non-random dysregulation of specific isomiRs contributes to the understanding of the complex melanoma pathogenesis and serves as the basis for further functional studies.
Resumo:
The deployment of ultra-dense networks is one of the most promising solutions to manage the phenomenon of co-channel interference that affects the latest wireless communication systems, especially in hotspots. To meet the requirements of the use-cases and the immense amount of traffic generated in these scenarios, 5G ultra-dense networks are being deployed using various technologies, such as distributed antenna system (DAS) and cloud-radio access network (C-RAN). Through these centralized densification schemes, virtualized baseband processing units coordinate the distributed access points and manage the available network resources. In particular, link adaptation techniques are shown to be fundamental to overall system operation and performance enhancement. The core of this dissertation is the result of an analysis and a comparison of dynamic and adaptive methods for modulation and coding scheme (MCS) selection applied to the latest mobile telecommunications standards. A novel algorithm based on the proportional-integral-derivative (PID) controller principles and block error rate (BLER) target has been proposed. Tests were conducted in a 4G and 5G system level laboratory and, by means of a channel emulator, the performance was evaluated for different channel models and target BLERs. Furthermore, due to the intrinsic sectorization of the end-users distribution in the investigated scenario, a preliminary analysis on the joint application of users grouping algorithms with multi-antenna and multi-user techniques has been performed. In conclusion, the importance and impact of other fundamental physical layer operations, such as channel estimation and power control, on the overall end-to-end system behavior and performance were highlighted.
Resumo:
The importance of Helicobacter pylori as a human pathogen is underlined by the plethora of diseases it is responsible for. The capacity of H. pylori to adapt to the restricted host-associated environment andto evade the host immune response largely depends on a streamlined signalling network. The peculiar H. pylori small genome size combined with its paucity of transcriptional regulators highlights the relevance of post-transcriptional regulatory mechanisms as small non-coding RNAs (sRNAs). However, among the 8 RNases represented in H. pylori genome, a regulator guiding sRNAs metabolism is still not well studied. We investigated for the first time the physiological role in H. pylori G27 strain of the RNase Y enzyme. In the first line of research we provide a comprehensive characterization of the RNase Y activity by analysing its genomic organization and the factors that orchestrate its expression. Then, based on bioinformatic prediction models, we depict the most relevant determinants of RNase Y function, demonstrating a correlation of both structure and domain organization with orthologues represented in Gram-positive bacteria. To unveil the post-transcriptional regulatory effect exerted by the RNase Y, we compared the transcriptome of an RNase Y knock-out mutant to the parental wild type strain by RNA-seq approach. In the second line of research we characterized the activity of this single strand specific endoribonuclease on cag-PAI non coding RNA 1 (CncR1) sRNA. We found that deletion or inactivation of RNase Y led to the accumulation of a 3’-extended CncR1 (CncR1-L) transcript over time. Moreover, beneath its increased half-life, CncR1-L resembled a CncR1 inactive phenotype. Finally, we focused on the characterization of the in vivo interactome of CncR1. We set up a preliminary MS2-affinity purification coupled with RNA-sequencing (MAPS) approach and we evaluated the enrichment of specific targets, demonstrating the suitability of the technique in the H. pylori G27 strain.
Resumo:
The Internet of Things (IoT) has grown rapidly in recent years, leading to an increased need for efficient and secure communication between connected devices. Wireless Sensor Networks (WSNs) are composed of small, low-power devices that are capable of sensing and exchanging data, and are often used in IoT applications. In addition, Mesh WSNs involve intermediate nodes forwarding data to ensure more robust communication. The integration of Unmanned Aerial Vehicles (UAVs) in Mesh WSNs has emerged as a promising solution for increasing the effectiveness of data collection, as UAVs can act as mobile relays, providing extended communication range and reducing energy consumption. However, the integration of UAVs and Mesh WSNs still poses new challenges, such as the design of efficient control and communication strategies. This thesis explores the networking capabilities of WSNs and investigates how the integration of UAVs can enhance their performance. The research focuses on three main objectives: (1) Ground Wireless Mesh Sensor Networks, (2) Aerial Wireless Mesh Sensor Networks, and (3) Ground/Aerial WMSN integration. For the first objective, we investigate the use of the Bluetooth Mesh standard for IoT monitoring in different environments. The second objective focuses on deploying aerial nodes to maximize data collection effectiveness and QoS of UAV-to-UAV links while maintaining the aerial mesh connectivity. The third objective investigates hybrid WMSN scenarios with air-to-ground communication links. One of the main contribution of the thesis consists in the design and implementation of a software framework called "Uhura", which enables the creation of Hybrid Wireless Mesh Sensor Networks and abstracts and handles multiple M2M communication stacks on both ground and aerial links. The operations of Uhura have been validated through simulations and small-scale testbeds involving ground and aerial devices.
Resumo:
In rural and isolated areas without cellular coverage, Satellite Communication (SatCom) is the best candidate to complement terrestrial coverage. However, the main challenge for future generations of wireless networks will be to meet the growing demand for new services while dealing with the scarcity of frequency spectrum. As a result, it is critical to investigate more efficient methods of utilizing the limited bandwidth; and resource sharing is likely the only choice. The research community’s focus has recently shifted towards the interference management and exploitation paradigm to meet the increasing data traffic demands. In the Downlink (DL) and Feedspace (FS), LEO satellites with an on-board antenna array can offer service to numerous User Terminals (UTs) (VSAT or Handhelds) on-ground in FFR schemes by using cutting-edge digital beamforming techniques. Considering this setup, the adoption of an effective user scheduling approach is a critical aspect given the unusually high density of User terminals on the ground as compared to the on-board available satellite antennas. In this context, one possibility is that of exploiting clustering algorithms for scheduling in LEO MU-MIMO systems in which several users within the same group are simultaneously served by the satellite via Space Division Multiplexing (SDM), and then these different user groups are served in different time slots via Time Division Multiplexing (TDM). This thesis addresses this problem by defining a user scheduling problem as an optimization problem and discusses several algorithms to solve it. In particular, focusing on the FS and user service link (i.e., DL) of a single MB-LEO satellite operating below 6 GHz, the user scheduling problem in the Frequency Division Duplex (FDD) mode is addressed. The proposed State-of-the-Art scheduling approaches are based on graph theory. The proposed solution offers high performance in terms of per-user capacity, Sum-rate capacity, SINR, and Spectral Efficiency.
Resumo:
This thesis is focused on the design of a flexible, dynamic and innovative telecommunication's system for future 6G applications on vehicular communications. The system is based on the development of drones acting as mobile base stations in an urban scenario to cope with the increasing traffic demand and avoid network's congestion conditions. In particular, the exploitation of Reinforcement Learning algorithms is used to let the drone learn autonomously how to behave in a scenario full of obstacles with the goal of tracking and serve the maximum number of moving vehicles, by at the same time, minimizing the energy consumed to perform its tasks. This project is an extraordinary opportunity to open the doors to a new way of applying and develop telecommunications in an urban scenario by mixing it to the rising world of the Artificial Intelligence.
Resumo:
The need for data collection from sensors dispersed in the environment is an increasingly important problem in the sector of telecommunications. LoRaWAN is one of the most popular protocols for low-power wide-area networks (LPWAN) that is made to solve the aforementioned problem. The aim of this study is to test the behavior of the LoRaWAN protocol when the gateway that collects data is implemented on a flying platform or, more specifically, a drone. This will be pursued using performance data in terms of access to the channel of the sensor nodes connected to the flying gateway. The trajectory of the aircraft is precomputed using a given algorithm and sensor nodes’ clusterization. The expected results are as follows: simulate the LoraWAN system behavior including the trajectory of the drone and the deployment of nodes; compare and discuss the effectiveness of the LoRaWAN simulator by conducting on-field trials, where the trajectory design and the nodes’ deployment are the same.
Resumo:
Disconnectivity between the Default Mode Network (DMN) nodes can cause clinical symptoms and cognitive deficits in Alzheimer׳s disease (AD). We aimed to examine the structural connectivity between DMN nodes, to verify the extent in which white matter disconnection affects cognitive performance. MRI data of 76 subjects (25 mild AD, 21 amnestic Mild Cognitive Impairment subjects and 30 controls) were acquired on a 3.0T scanner. ExploreDTI software (fractional Anisotropy threshold=0.25 and the angular threshold=60°) calculated axial, radial, and mean diffusivities, fractional anisotropy and streamline count. AD patients showed lower fractional anisotropy (P=0.01) and streamline count (P=0.029), and higher radial diffusivity (P=0.014) than controls in the cingulum. After correction for white matter atrophy, only fractional anisotropy and radial diffusivity remained significantly lower in AD compared to controls (P=0.003 and P=0.05). In the parahippocampal bundle, AD patients had lower mean and radial diffusivities (P=0.048 and P=0.013) compared to controls, from which only radial diffusivity survived for white matter adjustment (P=0.05). Regression models revealed that cognitive performance is also accounted for by white matter microstructural values. Structural connectivity within the DMN is important to the execution of high-complexity tasks, probably due to its relevant role in the integration of the network.
Resumo:
32
Resumo:
The article seeks to investigate patterns of performance and relationships between grip strength, gait speed and self-rated health, and investigate the relationships between them, considering the variables of gender, age and family income. This was conducted in a probabilistic sample of community-dwelling elderly aged 65 and over, members of a population study on frailty. A total of 689 elderly people without cognitive deficit suggestive of dementia underwent tests of gait speed and grip strength. Comparisons between groups were based on low, medium and high speed and strength. Self-related health was assessed using a 5-point scale. The males and the younger elderly individuals scored significantly higher on grip strength and gait speed than the female and oldest did; the richest scored higher than the poorest on grip strength and gait speed; females and men aged over 80 had weaker grip strength and lower gait speed; slow gait speed and low income arose as risk factors for a worse health evaluation. Lower muscular strength affects the self-rated assessment of health because it results in a reduction in functional capacity, especially in the presence of poverty and a lack of compensatory factors.
Resumo:
83
Resumo:
The search for an Alzheimer's disease (AD) biomarker is one of the most relevant contemporary research topics due to the high prevalence and social costs of the disease. Functional connectivity (FC) of the default mode network (DMN) is a plausible candidate for such a biomarker. We evaluated 22 patients with mild AD and 26 age- and gender-matched healthy controls. All subjects underwent resting functional magnetic resonance imaging (fMRI) in a 3.0 T scanner. To identify the DMN, seed-based FC of the posterior cingulate was calculated. We also measured the sensitivity/specificity of the method, and verified a correlation with cognitive performance. We found a significant difference between patients with mild AD and controls in average z-scores: DMN, whole cortical positive (WCP) and absolute values. DMN individual values showed a sensitivity of 77.3% and specificity of 70%. DMN and WCP values were correlated to global cognition and episodic memory performance. We showed that individual measures of DMN connectivity could be considered a promising method to differentiate AD, even at an early phase, from normal aging. Further studies with larger numbers of participants, as well as validation of normal values, are needed for more definitive conclusions.