997 resultados para vehicle activated sign
Resumo:
We examined the reactions of fishes to a manned submersible and a remotely operated vehicle (ROV) during surveys conducted in habitats of rock and mud at depths of 30–408 m off central California in 2007. We observed 26 taxa for 10,550 fishes observed from the submersible and for 16,158 fishes observed from the ROV. A reaction was defined as a distinct movement of a fish that, for a benthic or hovering individual, was greater than one body length away from its initial position or, for a swimming individual, was a change of course or speed. Of the observed fishes, 57% reacted to the ROV and 11% reacted to the submersible. Aggregating species and those species initially observed off the seafloor reacted most often to both vehicles. Fishes reacted more often to each vehicle when they were >1 m above the seafloor (22% of all fishes >1 m above the seafloor reacted to the submersible and 73% to the ROV) than when they were in contact with the seafloor (2% of all reactions to the submersible and 18% to the ROV). Fishes reacted by swimming away from both vehicles rather than toward them. Consideration of these reactions can inform survey designs and selection of survey tools and can, thereby, increase the reliability of fish assemblage metrics (e.g., abundance, density, and biomass) and assessments of fish and habitat associations.
Resumo:
Stabilisation/solidification (S/S) is an effective technique for reducing the leachability of contaminants in soils. Very few studies have investigated the use of ground granulated blast furnace slag (GGBS) for S/S treatment of contaminated soils, although it has been shown to be effective in ground improvement. This study sought to investigate the potential of GGBS activated by cement and lime for S/S treatment of a mixed contaminated soil. A sandy soil spiked with 3000mg/kg each of a cocktail of heavy metals (Cd, Ni, Zn, Cu and Pb) and 10,000mg/kg of diesel was treated with binder blends of one part hydrated lime to four parts GGBS (lime-slag), and one part cement to nine parts GGBS (slag-cement). Three binder dosages, 5, 10 and 20% (m/m) were used and contaminated soil-cement samples were compacted to their optimum water contents. The effectiveness of the treatment was assessed using unconfined compressive strength (UCS), permeability and acid neutralisation capacity (ANC) tests with determination of contaminant leachability at the different acid additions. UCS values of up to 800kPa were recorded at 28days. The lowest coefficient of permeability recorded was 5×10(-9)m/s. With up to 20% binder dosage, the leachability of the contaminants was reduced to meet relevant environmental quality standards and landfill waste acceptance criteria. The pH-dependent leachability of the metals decreased over time. The results show that GGBS activated by cement and lime would be effective in reducing the leachability of contaminants in contaminated soils.
Resumo:
Autonomous underwater vehicles (AUV’s) are increasingly used to collect physical, chemical, and biological information in the marine environment. Recent efforts include merging AUV technology with acoustic telemetry to provide information on the distribution and movements of marine fish. We compared surface vessel and AUV tracking capabilities under rigorous conditions in coastal waters near Juneau, Alaska. Tracking surveys were conducted with a REMUS 100 AUV equipped with an integrated acoustic receiver and hydrophone. The AUV was programmed to navigate along predetermined routes to detect both reference transmitters at 20–500 m depths and tagged fish and crabs in situ. Comparable boat surveys were also conducted. Transmitter depth had a major impact on tracking performance. The AUV was equally effective or better than the boat at detecting reference transmitters in shallow water, and significantly better for transmitters at deeper depths. Similar results were observed for tagged animals. Red king crab, Paralithodes camtschaticus, at moderate depths were recorded by both tracking methods, while only the AUV detected Sablefish, Anoplopoma fimbria, at depths exceeding 500 m. Strong currents and deep depths caused problems with AUV navigation, position estimation, and operational performance, but reflect problems encountered by other AUV applications that will likely diminish with future advances, enhanced methods, and increased use.
Resumo:
Remotely operated vehicle (ROV) surveys were conducted from NOAA’s state-of-the-art Fisheries Survey Vessel (FSV) Bell M. Shimada during a six-day transit November 1-5, 2010 between San Diego, CA and Seattle, WA. The objective of this survey was to locate and characterize deep-sea coral and sponge ecosystems at several recommended sites in support of NOAA’s Coral Reef Conservation Program. Deep-sea corals and sponges were photographed and collected whenever possible using the Southwest Fisheries Science Center’s (SWFSC) Phantom ROV ‘Sebastes’ (Fig. 1). The surveyed sites were recommended by National Marine Sanctuary (NMS) scientists at Monterey Bay NMS, Gulf of the Farallones NMS, and Olympic Coast NMS (Fig. 2). The specific sites were: Sur Canyon, The Football, Coquille Bank, and Olympic Coast NMS. During each dive, the ROV collected digital still images, video, navigation, and along-track conductivity-temperature-depth (CTD), and optode data. Video and high-resolution photographs were used to quantify abundance of corals, sponges, and associated fishes and invertebrates to the lowest practicable taxonomic level, and also to classify the seabed by substrate type. A reference laser system was used to quantify area searched and estimate the density of benthic fauna.