917 resultados para vector error correction model


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Este artículo pertenece a una sección de la revista dedicada a psicología social

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Comparison of donor-acceptor electronic couplings calculated within two-state and three-state models suggests that the two-state treatment can provide unreliable estimates of Vda because of neglecting the multistate effects. We show that in most cases accurate values of the electronic coupling in a π stack, where donor and acceptor are separated by a bridging unit, can be obtained as Ṽ da = (E2 - E1) μ12 Rda + (2 E3 - E1 - E2) 2 μ13 μ23 Rda2, where E1, E2, and E3 are adiabatic energies of the ground, charge-transfer, and bridge states, respectively, μij is the transition dipole moments between the states i and j, and Rda is the distance between the planes of donor and acceptor. In this expression based on the generalized Mulliken-Hush approach, the first term corresponds to the coupling derived within a two-state model, whereas the second term is the superexchange correction accounting for the bridge effect. The formula is extended to bridges consisting of several subunits. The influence of the donor-acceptor energy mismatch on the excess charge distribution, adiabatic dipole and transition moments, and electronic couplings is examined. A diagnostic is developed to determine whether the two-state approach can be applied. Based on numerical results, we showed that the superexchange correction considerably improves estimates of the donor-acceptor coupling derived within a two-state approach. In most cases when the two-state scheme fails, the formula gives reliable results which are in good agreement (within 5%) with the data of the three-state generalized Mulliken-Hush model

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Models of the dynamics of nitrogen in soil (soil-N) can be used to aid the fertilizer management of a crop. The predictions of soil-N models can be validated by comparison with observed data. Validation generally involves calculating non-spatial statistics of the observations and predictions, such as their means, their mean squared-difference, and their correlation. However, when the model predictions are spatially distributed across a landscape the model requires validation with spatial statistics. There are three reasons for this: (i) the model may be more or less successful at reproducing the variance of the observations at different spatial scales; (ii) the correlation of the predictions with the observations may be different at different spatial scales; (iii) the spatial pattern of model error may be informative. In this study we used a model, parameterized with spatially variable input information about the soil, to predict the mineral-N content of soil in an arable field, and compared the results with observed data. We validated the performance of the N model spatially with a linear mixed model of the observations and model predictions, estimated by residual maximum likelihood. This novel approach allowed us to describe the joint variation of the observations and predictions as: (i) independent random variation that occurred at a fine spatial scale; (ii) correlated random variation that occurred at a coarse spatial scale; (iii) systematic variation associated with a spatial trend. The linear mixed model revealed that, in general, the performance of the N model changed depending on the spatial scale of interest. At the scales associated with random variation, the N model underestimated the variance of the observations, and the predictions were correlated poorly with the observations. At the scale of the trend, the predictions and observations shared a common surface. The spatial pattern of the error of the N model suggested that the observations were affected by the local soil condition, but this was not accounted for by the N model. In summary, the N model would be well-suited to field-scale management of soil nitrogen, but suited poorly to management at finer spatial scales. This information was not apparent with a non-spatial validation. (c),2007 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The extent to which the four-dimensional variational data assimilation (4DVAR) is able to use information about the time evolution of the atmosphere to infer the vertical spatial structure of baroclinic weather systems is investigated. The singular value decomposition (SVD) of the 4DVAR observability matrix is introduced as a novel technique to examine the spatial structure of analysis increments. Specific results are illustrated using 4DVAR analyses and SVD within an idealized 2D Eady model setting. Three different aspects are investigated. The first aspect considers correcting errors that result in normal-mode growth or decay. The results show that 4DVAR performs well at correcting growing errors but not decaying errors. Although it is possible for 4DVAR to correct decaying errors, the assimilation of observations can be detrimental to a forecast because 4DVAR is likely to add growing errors instead of correcting decaying errors. The second aspect shows that the singular values of the observability matrix are a useful tool to identify the optimal spatial and temporal locations for the observations. The results show that the ability to extract the time-evolution information can be maximized by placing the observations far apart in time. The third aspect considers correcting errors that result in nonmodal rapid growth. 4DVAR is able to use the model dynamics to infer some of the vertical structure. However, the specification of the case-dependent background error variances plays a crucial role.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The theta-logistic is a widely used generalisation of the logistic model of regulated biological processes which is used in particular to model population regulation. Then the parameter theta gives the shape of the relationship between per-capita population growth rate and population size. Estimation of theta from population counts is however subject to bias, particularly when there are measurement errors. Here we identify factors disposing towards accurate estimation of theta by simulation of populations regulated according to the theta-logistic model. Factors investigated were measurement error, environmental perturbation and length of time series. Large measurement errors bias estimates of theta towards zero. Where estimated theta is close to zero, the estimated annual return rate may help resolve whether this is due to bias. Environmental perturbations help yield unbiased estimates of theta. Where environmental perturbations are large, estimates of theta are likely to be reliable even when measurement errors are also large. By contrast where the environment is relatively constant, unbiased estimates of theta can only be obtained if populations are counted precisely Our results have practical conclusions for the design of long-term population surveys. Estimation of the precision of population counts would be valuable, and could be achieved in practice by repeating counts in at least some years. Increasing the length of time series beyond ten or 20 years yields only small benefits. if populations are measured with appropriate accuracy, given the level of environmental perturbation, unbiased estimates can be obtained from relatively short censuses. These conclusions are optimistic for estimation of theta. (C) 2008 Elsevier B.V All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A tunable radial basis function (RBF) network model is proposed for nonlinear system identification using particle swarm optimisation (PSO). At each stage of orthogonal forward regression (OFR) model construction, PSO optimises one RBF unit's centre vector and diagonal covariance matrix by minimising the leave-one-out (LOO) mean square error (MSE). This PSO aided OFR automatically determines how many tunable RBF nodes are sufficient for modelling. Compared with the-state-of-the-art local regularisation assisted orthogonal least squares algorithm based on the LOO MSE criterion for constructing fixed-node RBF network models, the PSO tuned RBF model construction produces more parsimonious RBF models with better generalisation performance and is computationally more efficient.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we generalise a previously-described model of the error-prone polymerase chain reaction (PCR) reaction to conditions of arbitrarily variable amplification efficiency and initial population size. Generalisation of the model to these conditions improves the correspondence to observed and expected behaviours of PCR, and restricts the extent to which the model may explore sequence space for a prescribed set of parameters. Error-prone PCR in realistic reaction conditions is predicted to be less effective at generating grossly divergent sequences than the original model. The estimate of mutation rate per cycle by sampling sequences from an in vitro PCR experiment is correspondingly affected by the choice of model and parameters. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Estimation of a population size by means of capture-recapture techniques is an important problem occurring in many areas of life and social sciences. We consider the frequencies of frequencies situation, where a count variable is used to summarize how often a unit has been identified in the target population of interest. The distribution of this count variable is zero-truncated since zero identifications do not occur in the sample. As an application we consider the surveillance of scrapie in Great Britain. In this case study holdings with scrapie that are not identified (zero counts) do not enter the surveillance database. The count variable of interest is the number of scrapie cases per holding. For count distributions a common model is the Poisson distribution and, to adjust for potential heterogeneity, a discrete mixture of Poisson distributions is used. Mixtures of Poissons usually provide an excellent fit as will be demonstrated in the application of interest. However, as it has been recently demonstrated, mixtures also suffer under the so-called boundary problem, resulting in overestimation of population size. It is suggested here to select the mixture model on the basis of the Bayesian Information Criterion. This strategy is further refined by employing a bagging procedure leading to a series of estimates of population size. Using the median of this series, highly influential size estimates are avoided. In limited simulation studies it is shown that the procedure leads to estimates with remarkable small bias.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel rotor velocity estimation scheme applicable to vector controlled induction motors has been described. The proposed method will evaluate rotor velocity, ωr, on-line, does not require any extra transducers or injection of any signals, nor does it employ complicated algorithms such as MRAS or Kalman filters. Furthermore, the new scheme will operate at all velocities including zero with very little error. The procedure employs motor model equations, however all differential and integral terms have been eliminated giving a very fast, low-cost, effective and practical alternative to the current available methods. Simulation results verify the operation of the scheme under ideal and PWM conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A 24-member ensemble of 1-h high-resolution forecasts over the Southern United Kingdom is used to study short-range forecast error statistics. The initial conditions are found from perturbations from an ensemble transform Kalman filter. Forecasts from this system are assumed to lie within the bounds of forecast error of an operational forecast system. Although noisy, this system is capable of producing physically reasonable statistics which are analysed and compared to statistics implied from a variational assimilation system. The variances for temperature errors for instance show structures that reflect convective activity. Some variables, notably potential temperature and specific humidity perturbations, have autocorrelation functions that deviate from 3-D isotropy at the convective-scale (horizontal scales less than 10 km). Other variables, notably the velocity potential for horizontal divergence perturbations, maintain 3-D isotropy at all scales. Geostrophic and hydrostatic balances are studied by examining correlations between terms in the divergence and vertical momentum equations respectively. Both balances are found to decay as the horizontal scale decreases. It is estimated that geostrophic balance becomes less important at scales smaller than 75 km, and hydrostatic balance becomes less important at scales smaller than 35 km, although more work is required to validate these findings. The implications of these results for high-resolution data assimilation are discussed.