768 resultados para underwater wireless sensor networks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents experimental results of the communication performance evaluation of a prototype ZigBee-based patient monitoring system commissioned in an in-patient floor of a Portuguese hospital (HPG – Hospital Privado de Guimar~aes). Besides, it revisits relevant problems that affect the performance of nonbeacon-enabled ZigBee networks. Initially, the presence of hidden-nodes and the impact of sensor node mobility are discussed. It was observed, for instance, that the message delivery ratio in a star network consisting of six wireless electrocardiogram sensor devices may decrease from 100% when no hidden-nodes are present to 83.96% when half of the sensor devices are unable to detect the transmissions made by the other half. An additional aspect which affects the communication reliability is a deadlock condition that can occur if routers are unable to process incoming packets during the backoff part of the CSMA-CA mechanism. A simple approach to increase the message delivery ratio in this case is proposed and its effectiveness is verified. The discussion and results presented in this paper aim to contribute to the design of efficient networks,and are valid to other scenarios and environments rather than hospitals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Future industrial control/multimedia applications will increasingly impose or benefit from wireless and mobile communications. Therefore, there is an enormous eagerness for extending currently available industrial communications networks with wireless and mobility capabilities. The RFieldbus European project is just one example, where a PROFIBUS-based hybrid (wired/wireless) architecture was specified and implemented. In the RFieldbus architecture, interoperability between wired and wireless components is achieved by the use specific intermediate networking systems operating at the physical layer level, i.e. operating as repeaters. Instead, in this paper we will focus on a bridge-based approach, which presents several advantages. This concept was introduced in (Ferreira, et al., 2002), where a bridge-based approach was briefly outlined. Then, a specific Inter-Domain Protocol (IDP) was proposed to handle the Inter-Domain transactions in such a bridge-based approach (Ferreira, et al., 2003a). The major contribution of this paper is in extending these previous works by describing the protocol extensions to support inter-cell mobility in such a bridge-based hybrid wired/wireless PROFIBUS networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consider a wireless sensor network (WSN) where a broadcast from a sensor node does not reach all sensor nodes in the network; such networks are often called multihop networks. Sensor nodes take sensor readings but individual sensor readings are not very important. It is important however to compute aggregated quantities of these sensor readings. The minimum and maximum of all sensor readings at an instant are often interesting because they indicate abnormal behavior, for example if the maximum temperature is very high then it may be that a fire has broken out. We propose an algorithm for computing the min or max of sensor reading in a multihop network. This algorithm has the particularly interesting property of having a time complexity that does not depend on the number of sensor nodes; only the network diameter and the range of the value domain of sensor readings matter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a wireless medium access control (MAC) protocol that provides static-priority scheduling of messages in a guaranteed collision-free manner. Our protocol supports multiple broadcast domains, resolves the wireless hidden terminal problem and allows for parallel transmissions across a mesh network. Arbitration of messages is achieved without the notion of a master coordinating node, global clock synchronization or out-of-band signaling. The protocol relies on bit-dominance similar to what is used in the CAN bus except that in order to operate on a wireless physical layer, nodes are not required to receive incoming bits while transmitting. The use of bit-dominance efficiently allows for a much larger number of priorities than would be possible using existing wireless solutions. A MAC protocol with these properties enables schedulability analysis of sporadic message streams in wireless multihop networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oceans have shown tremendous importance and impact on our lives. Thus the need for monitoring and protecting the oceans has grown exponentially in recent years. On the other hand, oceans have economical and industrial potential in areas such as pharmaceutical, oil, minerals and biodiversity. This demand is increasing and the need for high data rate and near real-time communications between submerged agents became of paramount importance. Among the needs for underwater communications, streaming video (e.g. for inspecting risers or hydrothermal vents) can be seen as the top challenge, which when solved will make all the other applications possible. Presently, the only reliable approach for underwater video streaming relies on wired connections or tethers (e.g. from ROVs to the surface) which presents severe operational constraints that makes acoustic links together with AUVs and sensor networks strongly appealing. Using new polymer-based acoustic transducers, which in very recent works have shown to have bandwidth and power efficiency much higher than the usual ceramics, this article proposes the development of a reprogrammable acoustic modem for operating in underwater communications with video streaming capabilities. The results have shown a maximum data-rate of 1Mbps with a simple modulation scheme such as OOK, at a distance of 20 m.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia de Materiais.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Networked control systems (NCS) are distributed control system in which sensors, actuators and controllers are physically separated and connected through communication networks. NCS represent the evolution of networked control architectures providing greater modularity and control decentralization, ease maintenance and diagnosis and lower cost of implementation. A recent trend in this research topic is the development of NCS using wireless networks which enable interoperability between existing wired and wireless systems. This paper presents the feasibility analysis of using a serial RS-232 to Bluetooth converter as a wireless sensor link in NCS. In order to support this investigation, relevant performance metrics for wireless control applications such as jitter, time delay and messages lost are highlighted and calculated to evaluate the converter capabilities. In addition the control performance of an implemented motor control system using the converter is analyzed. Experimental results led to the conclusion that serial RS-232 Bluetooth converters can be used to implement wireless networked control systems (WNCS) providing transmission rates and closed control loop times which are acceptable for NCS applications. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Networked control systems (NCS) are distributed control system where the sensors, actuators and controllers are physically separated and connected through communication networks. NCS represent the evolution of networked control architectures providing greater modularity and control decentralization, ease maintenance and diagnosis and lower cost of implementation. A recent trend in this research topic is the development of NCS using wireless networks (WNCS) enabling interoperability between existing wired and wireless systems. This paper evaluates a serial RS-232 ZigBee device as a wireless sensor link in NCS. In order to support this investigation, relevant performance metrics for wireless control applications such as jitter, time delay and messages lost are highlighted and calculated to evaluate the device capabilities. In addition the control performance of an implemented motor control system using the device is analyzed. Experimental results led to the conclusion that serial RS-232 ZigBee devices can be used to implement WNCS and the use of this device delay information in the PID controller discretization can improve the control performance of the system. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Networked control systems (NCSs) are distributed control system in which sensors, actuators and controllers are physically separated and connected through communication networks. NCS represent the evolution of networked control architectures providing greater modularity and control decentralization, ease maintenance and diagnosis and lower cost of implementation. A recent trend in this research topic is the development of NCS using wireless networks(WNCS)which enable interoperability between existing wiredand wireless systems. This paper presents the feasibility analysis of using serial to wireless converter as a wireless sensor link in NCS. In order to support this investigation, relevant performance metrics for wireless control applications such as jitter, time delay and messages lost are highlighted and calculated to evaluate the wireless converter capabilities. In addition the control performance of an implemented motor control system using the converter is analyzed. Experimental results led to the conclusion that serial ZigBee device isrecommended against the Bluetooth as it provided better metrics for control applications. However, bothdevices can be used to implement WNCS providing transmission rates and closed control loop times which are acceptable for NCS applications.Moreoverthe use of thewireless device delay in the PID controller discretization can improve the control performance of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today, third generation networks are consolidated realities, and user expectations on new applications and services are becoming higher and higher. Therefore, new systems and technologies are necessary to move towards the market needs and the user requirements. This has driven the development of fourth generation networks. ”Wireless network for the fourth generation” is the expression used to describe the next step in wireless communications. There is no formal definition for what these fourth generation networks are; however, we can say that the next generation networks will be based on the coexistence of heterogeneous networks, on the integration with the existing radio access network (e.g. GPRS, UMTS, WIFI, ...) and, in particular, on new emerging architectures that are obtaining more and more relevance, as Wireless Ad Hoc and Sensor Networks (WASN). Thanks to their characteristics, fourth generation wireless systems will be able to offer custom-made solutions and applications personalized according to the user requirements; they will offer all types of services at an affordable cost, and solutions characterized by flexibility, scalability and reconfigurability. This PhD’s work has been focused on WASNs, autoconfiguring networks which are not based on a fixed infrastructure, but are characterized by being infrastructure less, where devices have to automatically generate the network in the initial phase, and maintain it through reconfiguration procedures (if nodes’ mobility, or energy drain, etc..., cause disconnections). The main part of the PhD activity has been focused on an analytical study on connectivity models for wireless ad hoc and sensor networks, nevertheless a small part of my work was experimental. Anyway, both the theoretical and experimental activities have had a common aim, related to the performance evaluation of WASNs. Concerning the theoretical analysis, the objective of the connectivity studies has been the evaluation of models for the interference estimation. This is due to the fact that interference is the most important performance degradation cause in WASNs. As a consequence, is very important to find an accurate model that allows its investigation, and I’ve tried to obtain a model the most realistic and general as possible, in particular for the evaluation of the interference coming from bounded interfering areas (i.e. a WiFi hot spot, a wireless covered research laboratory, ...). On the other hand, the experimental activity has led to Throughput and Packet Error Rare measurements on a real IEEE802.15.4 Wireless Sensor Network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Healthcare, Human Computer Interfaces (HCI), Security and Biometry are the most promising application scenario directly involved in the Body Area Networks (BANs) evolution. Both wearable devices and sensors directly integrated in garments envision a word in which each of us is supervised by an invisible assistant monitoring our health and daily-life activities. New opportunities are enabled because improvements in sensors miniaturization and transmission efficiency of the wireless protocols, that achieved the integration of high computational power aboard independent, energy-autonomous, small form factor devices. Application’s purposes are various: (I) data collection to achieve off-line knowledge discovery; (II) user notification of his/her activities or in case a danger occurs; (III) biofeedback rehabilitation; (IV) remote alarm activation in case the subject need assistance; (V) introduction of a more natural interaction with the surrounding computerized environment; (VI) users identification by physiological or behavioral characteristics. Telemedicine and mHealth [1] are two of the leading concepts directly related to healthcare. The capability to borne unobtrusiveness objects supports users’ autonomy. A new sense of freedom is shown to the user, not only supported by a psychological help but a real safety improvement. Furthermore, medical community aims the introduction of new devices to innovate patient treatments. In particular, the extension of the ambulatory analysis in the real life scenario by proving continuous acquisition. The wide diffusion of emerging wellness portable equipment extended the usability of wearable devices also for fitness and training by monitoring user performance on the working task. The learning of the right execution techniques related to work, sport, music can be supported by an electronic trainer furnishing the adequate aid. HCIs made real the concept of Ubiquitous, Pervasive Computing and Calm Technology introduced in the 1988 by Marc Weiser and John Seeley Brown. They promotes the creation of pervasive environments, enhancing the human experience. Context aware, adaptive and proactive environments serve and help people by becoming sensitive and reactive to their presence, since electronics is ubiquitous and deployed everywhere. In this thesis we pay attention to the integration of all the aspects involved in a BAN development. Starting from the choice of sensors we design the node, configure the radio network, implement real-time data analysis and provide a feedback to the user. We present algorithms to be implemented in wearable assistant for posture and gait analysis and to provide assistance on different walking conditions, preventing falls. Our aim, expressed by the idea to contribute at the development of a non proprietary solutions, driven us to integrate commercial and standard solutions in our devices. We use sensors available on the market and avoided to design specialized sensors in ASIC technologies. We employ standard radio protocol and open source projects when it was achieved. The specific contributions of the PhD research activities are presented and discussed in the following. • We have designed and build several wireless sensor node providing both sensing and actuator capability making the focus on the flexibility, small form factor and low power consumption. The key idea was to develop a simple and general purpose architecture for rapid analysis, prototyping and deployment of BAN solutions. Two different sensing units are integrated: kinematic (3D accelerometer and 3D gyroscopes) and kinetic (foot-floor contact pressure forces). Two kind of feedbacks were implemented: audio and vibrotactile. • Since the system built is a suitable platform for testing and measuring the features and the constraints of a sensor network (radio communication, network protocols, power consumption and autonomy), we made a comparison between Bluetooth and ZigBee performance in terms of throughput and energy efficiency. Test in the field evaluate the usability in the fall detection scenario. • To prove the flexibility of the architecture designed, we have implemented a wearable system for human posture rehabilitation. The application was developed in conjunction with biomedical engineers who provided the audio-algorithms to furnish a biofeedback to the user about his/her stability. • We explored off-line gait analysis of collected data, developing an algorithm to detect foot inclination in the sagittal plane, during walk. • In collaboration with the Wearable Lab – ETH, Zurich, we developed an algorithm to monitor the user during several walking condition where the user carry a load. The remainder of the thesis is organized as follows. Chapter I gives an overview about Body Area Networks (BANs), illustrating the relevant features of this technology and the key challenges still open. It concludes with a short list of the real solutions and prototypes proposed by academic research and manufacturers. The domain of the posture and gait analysis, the methodologies, and the technologies used to provide real-time feedback on detected events, are illustrated in Chapter II. The Chapter III and IV, respectively, shown BANs developed with the purpose to detect fall and monitor the gait taking advantage by two inertial measurement unit and baropodometric insoles. Chapter V reports an audio-biofeedback system to improve balance on the information provided by the use centre of mass. A walking assistant based on the KNN classifier to detect walking alteration on load carriage, is described in Chapter VI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our society uses a large diversity of co-existing wired and wireless networks in order to satisfy its communication needs. A cooper- ation between these networks can benefit performance, service availabil- ity and deployment ease, and leads to the emergence of hybrid networks. This position paper focuses on a hybrid mobile-sensor network identify- ing potential advantages and challenges of its use and defining feasible applications. The main value of the paper, however, is in the proposed analysis approach to evaluate the performance at the mobile network side given the mixed mobile-sensor traffic. The approach combines packet- level analysis with modelling of flow-level behaviour and can be applied for the study of various application scenarios. In this paper we consider two applications with distinct traffic models namely multimedia traffic and best-effort traffic.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past several years the topics of energy consumption and energy harvesting have gained significant importance as a means for improved operation of wireless sensor and mesh networks. Energy-awareness of operation is especially relevant for application scenarios from the domain of environmental monitoring in hard to access areas. In this work we reflect upon our experiences with a real-world deployment of a wireless mesh network. In particular, a comprehensive study on energy measurements collected over several weeks during the summer and the winter period in a network deployment in the Swiss Alps is presented. Energy performance is monitored and analysed for three system components, namely, mesh node, battery and solar panel module. Our findings cover a number of aspects of energy consumption, including the amount of load consumed by a mesh node, the amount of load harvested by a solar panel module, and the dependencies between these two. With our work we aim to shed some light on energy-aware network operation and to help both users and developers in the planning and deployment of a new wireless (mesh) network for environmental research.