952 resultados para two-dimensional abstraction
Resumo:
We study the linear and nonlinear stability of stationary solutions of the forced two-dimensional Navier-Stokes equations on the domain [0,2π]x[0,2π/α], where α ϵ(0,1], with doubly periodic boundary conditions. For the linear problem we employ the classical energy{enstrophy argument to derive some fundamental properties of unstable eigenmodes. From this it is shown that forces of pure χ2-modes having wavelengths greater than 2π do not give rise to linear instability of the corresponding primary stationary solutions. For the nonlinear problem, we prove the equivalence of nonlinear stability with respect to the energy and enstrophy norms. This equivalence is then applied to derive optimal conditions for nonlinear stability, including both the high-and low-Reynolds-number limits.
Resumo:
Differentiated human neural stem cells were cultured in an inert three-dimensional (3D) scaffold and, unlike two-dimensional (2D) but otherwise comparable monolayer cultures, formed spontaneously active, functional neuronal networks that responded reproducibly and predictably to conventional pharmacological treatments to reveal functional, glutamatergic synapses. Immunocytochemical and electron microscopy analysis revealed a neuronal and glial population, where markers of neuronal maturity were observed in the former. Oligonucleotide microarray analysis revealed substantial differences in gene expression conferred by culturing in a 3D vs a 2D environment. Notable and numerous differences were seen in genes coding for neuronal function, the extracellular matrix and cytoskeleton. In addition to producing functional networks, differentiated human neural stem cells grown in inert scaffolds offer several significant advantages over conventional 2D monolayers. These advantages include cost savings and improved physiological relevance, which make them better suited for use in the pharmacological and toxicological assays required for development of stem cell-based treatments and the reduction of animal use in medical research.
MAGNETOHYDRODYNAMIC SIMULATIONS OF RECONNECTION AND PARTICLE ACCELERATION: THREE-DIMENSIONAL EFFECTS
Resumo:
Magnetic fields can change their topology through a process known as magnetic reconnection. This process in not only important for understanding the origin and evolution of the large-scale magnetic field, but is seen as a possibly efficient particle accelerator producing cosmic rays mainly through the first-order Fermi process. In this work we study the properties of particle acceleration inserted in reconnection zones and show that the velocity component parallel to the magnetic field of test particles inserted in magnetohydrodynamic (MHD) domains of reconnection without including kinetic effects, such as pressure anisotropy, the Hall term, or anomalous effects, increases exponentially. Also, the acceleration of the perpendicular component is always possible in such models. We find that within contracting magnetic islands or current sheets the particles accelerate predominantly through the first-order Fermi process, as previously described, while outside the current sheets and islands the particles experience mostly drift acceleration due to magnetic field gradients. Considering two-dimensional MHD models without a guide field, we find that the parallel acceleration stops at some level. This saturation effect is, however, removed in the presence of an out-of-plane guide field or in three-dimensional models. Therefore, we stress the importance of the guide field and fully three-dimensional studies for a complete understanding of the process of particle acceleration in astrophysical reconnection environments.
Resumo:
We study the properties of the lower bound on the exchange-correlation energy in two dimensions. First we review the derivation of the bound and show how it can be written in a simple density-functional form. This form allows an explicit determination of the prefactor of the bound and testing its tightness. Next we focus on finite two-dimensional systems and examine how their distance from the bound depends on the system geometry. The results for the high-density limit suggest that a finite system that comes as close as possible to the ultimate bound on the exchange-correlation energy has circular geometry and a weak confining potential with a negative curvature. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this work we present nonlinear models in two-dimensional space-time of two interacting scalar fields in the Lorentz and CPT violating scenarios. We discuss the soliton solutions for these models as well as the question of stability for them. This is done by generalizing a model recently published by Barreto and collaborators and also by getting new solutions for the model introduced by them.
Resumo:
We dimensionally reduce the ABJM model, obtaining a two-dimensional theory that can be thought of as a 'master action'. This encodes information about both T- and S-duality, i.e. describes fundamental (F1) and D-strings (D1) in 9 and 10 dimensions. The Higgsed theory at large VEV, (v) over tilde, and large k yields D1-brane actions in 9d and 10d, depending on which auxiliary fields are integrated out. For N = 1 there is a map to a Green-Schwarz string wrapping a nontrivial circle in C(4)/Z(k).
Resumo:
The semiclassical limit of quantum mechanical scattering in two dimensions is developed and the Wentzel-Kramers-Brillouin and eikonal results for two-dimensional scattering is derived. No backward or forward glory scattering is present in two dimensions. Other phenomena, such as rainbows and orbiting, do occur. (C) 2008 American Association of Physics Teachers.
Resumo:
The influence of dissipation on the simplified Fermi-Ulam accelerator model (SFUM) is investigated. The model is described in terms of a two-dimensional nonlinear mapping obtained from differential equations. It is shown that a dissipative SFUM possesses regions of phase space characterized by the property of area preservation.
Resumo:
Some dynamical properties of a bouncing ball model under the presence of an external force modelled by two nonlinear terms are studied. The description of the model is made by the use of a two-dimensional nonlinear measure-preserving map on the variable's velocity of the particle and time. We show that raising the straight of a control parameter which controls one of the nonlinearities, the positive Lyapunov exponent decreases in the average and suffers abrupt changes. We also show that for a specific range of control parameters, the model exhibits the phenomenon of Fermi acceleration. The explanation of both behaviours is given in terms of the shape of the external force and due to a discontinuity of the moving wall's velocity.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We use a non usual realization of the superalgebra to resolve certain two-dimensional potentials. The Hartmann and an anisotropic ring-shaped oscillator are explicitly solved.
Resumo:
We compute the semiclassical magnetization and susceptibility of non-interacting electrons, confined by a smooth two-dimensional potential and subjected to a uniform perpendicular magnetic field, in the general case when their classical motion is chaotic. It is demonstrated that the magnetization per particle m(B) is directly related to the staircase function N(E), which counts the single-particle levels up to energy E. Using Gutzwiller's trace formula for N, we derive a semiclassical expression for m. Our results show that the magnetization has a non-zero average, which arises from quantum corrections to the leading-order Weyl approximation to the mean staircase and which is independent of whether the classical motion is chaotic or not. Fluctuations about the average are due to classical periodic orbits and do represent a signature of chaos. This behaviour is confirmed by numerical computations for a specific system.
Resumo:
Buried two-dimensional arrays of InP dots were used as a template for the lateral ordering of self-assembled quantum dots. The template strain field can laterally organize compressive (InAs) as well as tensile (GaP) self-assembled nanostructures in a highly ordered square lattice. High-resolution transmission electron microscopy measurements show that the InAs dots are vertically correlated to the InP template, while the GaP dots are vertically anti-correlated, nucleating in the position between two buried InP dots. Finite InP dot size effects are observed to originate InAs clustering but do not affect GaP dot nucleation. The possibility of bilayer formation with different vertical correlations suggests a new path for obtaining three-dimensional pseudocrystals.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Some dynamical properties of the one dimensional Fermi accelerator model, under the presence of frictional force are studied. The frictional force is assumed as being proportional to the square particle's velocity. The problem is described by use of a two dimensional non linear mapping, therefore obtained via the solution of differential equations. We confirm that the model experiences contraction of the phase space area and in special, we characterized the behavior of the particle approaching an attracting fixed point. © 2007 American Institute of Physics.