982 resultados para tuned filters
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
J Biol Inorg Chem (2008) 13:1185–1195 DOI 10.1007/s00775-008-0414-3
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Hydrogen sulphide is one of the most toxic and corrosive compound present in swine-derived biogas streams.In this study, afield scale biotrickling filter for the removal of hydrogen sulfide was investigated.A Biofilter packed with supporting biofilm materials was fed continuously with a proprietary nutrient solution and operatedfor over 73days. The system has been operating with a H2S inlet concentrations ranging from 1,000to 3,000 ppm.Significant removal efficiencies >95% was demonstrated. pH of the stock feeding solution decreased from 6.2 to as low as 3.5within couple days.The resulting drop in pH provided circumstantial evidence to support biological H2 Soxidation to sulphuric acid by sulfide-oxidizers. Sulfur precipitation was also observed to occur. The results suggested that H2S removal from biogas stream can be efficiently achieved using portable, low cost and maintenance free biotrickling filters.
Resumo:
Micro/nano wrinkled patterns on cross-linked urethane/urea polymeric flexible free standing films with two soft segments, polypropylene oxide and polybutadiene, can be induced by UV-irradiation. The ability to write/erase these 3D structures, in a controlled manner, is the main focus of this work. The imprinting of the wrinkled structures was accomplished by swelling in an appropriate solvent followed by drying the membranes after the cross-linking process and UV irradiation. The surface tailoring of the elastomeric membranes was imaged by optical microscopy, scanning electronic microscopy and by atomic force microscopy. To erase the wrinkled structures the elastomers were swollen. The swelling as well as the sol/gel fraction and the UV radiation were tuned in order to control the wrinkles characteristics. It was found that the wrinkles wavelength, in the order of microns (1±0,25μm), was stamped by the UV radiation intensity and exposure time while the wrinkles' amplitude, in the order of nanometers (150-450 nm), was highly dependent on the swelling and sol/gel fraction. A prototype for volatile organic compounds detection was developed taking advantage of the unique 3D micro/nano wrinkles features.
Resumo:
INTRODUCTION: Mansonelliasis is caused by Mansonella ozzardi. It is widespread in the Amazon region, with a high prevalence. The common exam of thick blood smears stained with Giemsa shows low efficacy levels and has been an obstacle to diagnosing individuals with low blood parasitemia. METHODS: In order to increase diagnosis efficacy, the PCR technique was improved. RESULTS AND CONCLUSIONS: PCR demonstrated the best performance, with sensitivity and negative predictive values (NPV) of 100%, followed by blood filtration through membrane filters, which showed a sensitivity of 88.9% and a NPV of 84.6%, when compared to thick blood smears.
Resumo:
Polymeric nanoparticles (PNPs) have attracted considerable interest over the last few years due to their unique properties and behaviors provided by their small size. Such materials could be used in a wide range of applications such as diagnostics and drug delivery. Advantages of PNPs include controlled release, protection of drug molecules and its specific targeting, with concomitant increasing of the therapeutic index. In this work, novel sucrose and cholic acid based PNPs were prepared from different polymers, namely polyethylene glycol (PEG), poly(D,L-lactic-co-glycolic acid) (PLGA) and PLGA-co-PEG copolymer. In these PNP carriers, cholic acid will act as a drug incorporation site and the carbohydrate as targeting moiety. The uptake of nanoparticles into cells usually involves endocytotic processes, which depend primarily on their size and surface characteristics. These properties can be tuned by the nanoparticle preparation method. Therefore, the nanoprecipitation and the emulsion-solvent evaporation method were applied to prepare the PNPs. The influence of various parameters, such as concentration of the starting solution, evaporation method and solvent properties on the nanoparticle size, size distribution and morphology were studied. The PNPs were characterized by using atomic force microscopy (AFM), scanning electron microscopy (SEM) and dynamic light scattering (DLS) to assess their size distribution and morphology. The PNPs obtained by nanoprecipitation ranged in size between 90 nm and 130 nm with a very low polydispersity index (PDI < 0.3). On the other hand, the PNPs produced by the emulsion-solvent evaporation method revealed particle sizes around 300 nm with a high PDI value. More detailed information was found in AFM and SEM images, which demonstrated that all these PNPs were regularly spherical. ζ-potential measurements were satisfactory and evidenced the importance of sucrose moiety on the polymeric system, which was responsible for the obtained negative surface charge, providing colloidal stability. The results of this study show that sucrose and cholic acid based polymeric conjugates can be successfully used to prepare PNPs with tunable physicochemical characteristics. In addition, it provides novel information about the materials used and the methods applied. It is hoped that this work will be useful for the development of novel carbohydrate based nanoparticles for biomedical applications, specifically for targeted drug delivery.
Resumo:
Modern CMOS radio frequency (RF) Receivers have enabled efficient and increasing applications. The main requirement is to have system in a single chip, in order to minimize area and cost. For the purpose it is required the development of inductorless circuits for the key blocks of an RF receiver. Examples of this key blocks are RC oscillators, RF band pass filters, and Low Noise Amplifiers. The present dissertation presents an inductorless wideband MOSFET-only RF Non-Gyrator Type of Active Inductors with low area, low cost, and very low power, capable of covering the whole WMTS, and ISM, band and intended for biomedical applications. The proposed circuit is based on a floating capacitor connected between two controlled current sources. The first current source, which is controlled by the circuit input voltage, has two objectives: supply current to the capacitor (
Resumo:
In-Band Full-DupleX (IB-FDX) is defined as the ability for nodes to transmit and receive signals simultaneously on the same channel. Conventional digital wireless networks do not implement it, since a node’s own transmission signal causes interference to the signal it is trying to receive. However, recent studies attempt to overcome this obstacle, since it can potentially double the spectral efficiency of current wireless networks. Different mechanisms exist today that are able to reduce a significant part of the Self- Interference (SI), although specially tuned Medium Access Control (MAC) protocols are required to optimize its use. One of IB-FDX’s biggest problems is that the nodes’ interference range is extended, meaning the unusable space for other transmissions and receptions is broader. This dissertation proposes using MultiPacket Reception (MPR) to address this issue and adapts an already existing Single-Carrier with Frequency-Domain Equalization (SC-FDE) receiver to IB-FDX. The performance analysis suggests that MPR and IB-FDX have a strong synergy and are able to achieve higher data rates, when used together. Using analytical models, the optimal transmission patterns and transmission power were identified, which maximize the channel capacity with the minimal energy consumption. This was used to define a new MAC protocol, named Full-duplex Multipacket reception Medium Access Control (FM-MAC). FM-MAC was designed for a single-hop cellular infrastructure, where the Access Point (AP) and the terminals implement both IB-FDX and MPR. It divides the coverage range of the AP into a closer Full-DupleX (FDX) zone and a farther Half-DupleX (HDX) zone and adds a tunable fairness mechanism to avoid terminal starvation. Simulation results show that this protocol provides efficient support for both HDX and FDX terminals, maximizing its capacity when more FDX terminals are used.
Resumo:
With the projection of an increasing world population, hand-in-hand with a journey towards a bigger number of developed countries, further demand on basic chemical building blocks, as ethylene and propylene, has to be properly addressed in the next decades. The methanol-to-olefins (MTO) is an interesting reaction to produce those alkenes using coal, gas or alternative sources, like biomass, through syngas as a source for the production of methanol. This technology has been widely applied since 1985 and most of the processes are making use of zeolites as catalysts, particularly ZSM-5. Although its selectivity is not especially biased over light olefins, it resists to a quick deactivation by coke deposition, making it quite attractive when it comes to industrial environments; nevertheless, this is a highly exothermic reaction, which is hard to control and to anticipate problems, such as temperature runaways or hot-spots, inside the catalytic bed. The main focus of this project is to study those temperature effects, by addressing both experimental, where the catalytic performance and the temperature profiles are studied, and modelling fronts, which consists in a five step strategy to predict the weight fractions and activity. The mind-set of catalytic testing is present in all the developed assays. It was verified that the selectivity towards light olefins increases with temperature, although this also leads to a much faster catalyst deactivation. To oppose this effect, experiments were carried using a diluted bed, having been able to increase the catalyst lifetime between 32% and 47%. Additionally, experiments with three thermocouples placed inside the catalytic bed were performed, analysing the deactivation wave and the peaks of temperature throughout the bed. Regeneration was done between consecutive runs and it was concluded that this action can be a powerful means to increase the catalyst lifetime, maintaining a constant selectivity towards light olefins, by losing acid strength in a steam stabilised zeolitic structure. On the other hand, developments on the other approach lead to the construction of a raw basic model, able to predict weight fractions, that should be tuned to be a tool for deactivation and temperature profiles prediction.
Resumo:
2,4,5-Triaryl-imidazoles are versatile compounds with application in medicine, due to their biological activity, and materials sciences, for their interesting optical properties. These properties can be tuned by careful selection of substituents at positions 2, 4 and 5: replacement of the aryl group by an heterocyclic group results in larger π-conjugated systems with improved optical properties for application in nonlinear optics, OLEDs, DNA intercalators, and chemosensors. Moreover, it is expected that introducing more conjugation and rigidity into the resulting system will further improve its properties. The development of chromo/fluorescent probes that are capable of detecting ions with high sensitivity and selectivity in aqueous media is currently a topic of strong interest and the design of heteroditopic receptors that contain two or more different binding sites for the simultaneous complexation of cationic and anionic guests is a emerging field of supramolecular chemistry. In this communication, we report the synthesis of new phenanthroimidazoles substituted at position 2 with arylthienyl or arylfuryl moieties possessing substituents of different electronic character, in order to tune the chromo/fluoro response in the presence of relevant anions and metal cations. Their photophysical properties and chemosensory ability were studied in acetonitrile and mixtures of acetonitrile and water, and selective detection of cyanide was achieved in aqueous mixtures for some of the derivatives.
Resumo:
In recent years the research of sensors with good sensitivity and good selectivity in aqueous medium has been of great interest. Chemosensors soluble in aqueous media are very interesting, because of the importance in revealing a number of biological processes, disease states and environmental pollutions. 2,4,5-Triaryl-imidazoles are versatile compounds with application in medicine, due to their biological activity, and materials sciences, for their interesting optical properties. These properties can be tuned by careful selection of substituents at positions 2, 4 and 5: replacement of the aryl group by a heterocyclic group results in larger π-conjugated systems with improved optical properties for application in nonlinear optics, OLEDs, DNA intercalators, and chemosensors. In this communication, we report the synthesis of new phenanthroimidazoles, substituted at position 2 with (hetero)aryl groups of different electronic character, in order to evaluate their photophysical properties and chemosensory ability. The new derivatives were characterized by the usual techniques and a detailed photophysical study was undertaken. The evaluation of the compounds as fluorimetric chemosensors was carried out by performing titrations in acetonitrile and acetonitrile/water in the presence of relevant organic and inorganic anions, and of alkaline, alkaline-earth and transition metal cations.
Resumo:
The regeneration of soft biological tissues requires new substitutes that exhibit mechanical properties similar to the native tissue. Herein, thin saloplastic membranes with tunable physical properties are prepared by complexation of chitosan and alginate solutions containing different concentrations of sodium chloride. Polyelectrolyte complexes (PECs) are transferred to flat Petri dishes for compaction into membrane shapes by sedimentation and solvent evaporation. All membranes are resistant to degradation by lysozyme and are stable in solutions with pH values between 1 and 13. Immersing the different membranes in new doping solutions of increasing salt concentrations triggers the typical saloplastic behavior, with a high water absorption and decrease of the rigidity and ultimate tensile strength. The range of such variations is tuned by the sodium chloride amount used in the synthesis: high salt concentrations increase water uptake and tensile moduli, while decreasing the ultimate strength. Cellular assays demonstrate high proliferation rates and viability of L929 fibroblasts seeded onto the most rigid membranes. The results validate the use of saloplastic membranes as soft tissue substitutes for future biomedical applications.