936 resultados para transforming growth factor beta receptor 3


Relevância:

100.00% 100.00%

Publicador:

Resumo:

KRAS activation and PTEN inactivation are frequent events in endometrial tumorigenesis, occurring in 10% to 30% and 26% to 80% of endometrial cancers, respectively. Because we have recently shown activating mutations in fibroblast growth factor receptor 2 (FGFR2) in 16% of endometrioid endometrial cancers, we sought to determine the genetic context in which FGFR2 mutations occur. Analysis of 116 primary endometrioid endometrial cancers revealed that FGFR2 and KRAS mutations were mutually exclusive, whereas FGFR2 mutations were seen concomitantly with PTEN mutations. Here, we show that shRNA knockdown of FGFR2 or treatment with a pan-FGFR inhibitor, PD173074, resulted in cell cycle arrest and induction of cell death in endometrial cancer cells with activating mutations in FGFR2. This cell death in response to FGFR2 inhibition occurred within the context of loss-of-function mutations in PTEN and constitutive AKT phosphorylation, and was associated with a marked reduction in extracellular signal-regulated kinase 1/2 activation. Together, these data suggest that inhibition of FGFR2 may be a viable therapeutic option in endometrial tumors possessing activating mutations in FGFR2, despite the frequent abrogation of PTEN in this cancer type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Hreceptor (VEGFR) and FGF receptor (FGFR) signaling pathways. EXPERIMENTAL DESIGN: Six different s.c. patient-derived HCC xenografts were implanted into mice. Tumor growth was evaluated in mice treated with brivanib compared with control. The effects of brivanib on apoptosis and cell proliferation were evaluated by immunohistochemistry. The SK-HEP1 and HepG2 cells were used to investigate the effects of brivanib on the VEGFR-2 and FGFR-1 signaling pathways in vitro. Western blotting was used to determine changes in proteins in these xenografts and cell lines. RESULTS: Brivanib significantly suppressed tumor growth in five of six xenograft lines. Furthermore, brivanib-induced growth inhibition was associated with a decrease in phosphorylated VEGFR-2 at Tyr(1054/1059), increased apoptosis, reduced microvessel density, inhibition of cell proliferation, and down-regulation of cell cycle regulators. The levels of FGFR-1 and FGFR-2 expression in these xenograft lines were positively correlated with its sensitivity to brivanib-induced growth inhibition. In VEGF-stimulated and basic FGF stimulated SK-HEP1 cells, brivanib significantly inhibited VEGFR-2, FGFR-1, extracellular signal-regulated kinase 1/2, and Akt phosphorylation. CONCLUSION: This study provides a strong rationale for clinical investigation of brivanib in patients with HCC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report that 10% of melanoma tumors and cell lines harbor mutations in the fibroblast growth factor receptor 2 (FGFR2) gene. These novel mutations include three truncating mutations and 20 missense mutations occurring at evolutionary conserved residues in FGFR2 as well as among all four FGFRs. The mutation spectrum is characteristic of those induced by UV radiation. Mapping of these mutations onto the known crystal structures of FGFR2 followed by in vitro and in vivo studies show that these mutations result in receptor loss of function through several distinct mechanisms, including loss of ligand binding affinity, impaired receptor dimerization, destabilization of the extracellular domains, and reduced kinase activity. To our knowledge, this is the first demonstration of loss-of-function mutations in a class IV receptor tyrosine kinase in cancer. Taken into account with our recent discovery of activating FGFR2 mutations in endometrial cancer, we suggest that FGFR2 may join the list of genes that play context-dependent opposing roles in cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidermal growth factor (EGF) activation of the EGF receptor (EGFR) is an important mediator of cell migration, and aberrant signaling via this system promotes a number of malignancies including ovarian cancer. We have identified the cell surface glycoprotein CDCP1 as a key regulator of EGF/EGFR-induced cell migration. We show that signaling via EGF/EGFR induces migration of ovarian cancer Caov3 and OVCA420 cells with concomitant up-regulation of CDCP1 mRNA and protein. Consistent with a role in cell migration CDCP1 relocates from cell-cell junctions to punctate structures on filopodia after activation of EGFR. Significantly, disruption of CDCP1 either by silencing or the use of a function blocking antibody efficiently reduces EGF/EGFR-induced cell migration of Caov3 and OVCA420 cells. We also show that up-regulation of CDCP1 is inhibited by pharmacological agents blocking ERK but not Src signaling, indicating that the RAS/RAF/MEK/ERK pathway is required downstream of EGF/EGFR to induce increased expression of CDCP1. Our immunohistochemical analysis of benign, primary, and metastatic serous epithelial ovarian tumors demonstrates that CDCP1 is expressed during progression of this cancer. These data highlight a novel role for CDCP1 in EGF/EGFR-induced cell migration and indicate that targeting of CDCP1 may be a rational approach to inhibit progression of cancers driven by EGFR signaling including those resistant to anti-EGFR drugs because of activating mutations in the RAS/RAF/MEK/ERK pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Matrix metalloproteinase (MMP)-9 is an endopeptidase that digests basement membrane type-IV collagen. Enhanced expression has been related to tumour progression in a number of systems. The control of MMP expression is complex, but recently epidermal growth actor receptor (EGFR) activity has been implicated in up-regulation of MMP-9 in tumour cells in vitro. Aims To evaluate interrelations between MMP-9 and EGFR expression in non-small cell lung cancer (NSCLC) and to assess the impact of expression on survival. Methods This is a retrospective study of 152 patients who underwent resection for stage I-IIIa NSCLC with a post-operative survival >60 days. Minimum follow-up was 2 years. Standard ABC immunohistochemistry was performed on 4μm paraffin-embedded sections from the tumour periphery using monoclonal antibodies to MMP-9 and EGFR. Results: MMP-9 was expressed in the tumour cells of 79/152 (52%) cases. EGFR expression was found in 86/152 (57%) cases [membranous 51/152 (34%), cytoplasmic 35/152 (23%)]. MMP-9 expression was associated with poor outcome (p=0.04). Membranous, cytoplasmic and overall EGFR expression were not associated with outcome (p=0.29, p=0.85 and p=0.41 respectively). There was a strong correlation between MMP-9 expression and EGFR expression (p=0.001) and EGFR membranous expression (p=0.01) but not with cytoplasmic EGFR expression (p=0.28). Co-expression of MMP-9 and EGFR (36%) conferred a worse prognosis (p=0.003). Subset analysis revealed only MMP-9 and membranous EGFR co-expression (22%) was associated with poor outcome (p=0.008). Conclusions Our results show that MMP-9 and EGFR are co-expressed in NSCLC. This finding suggests the EGFR signalling pathway may play an important role in the invasive behaviour of NSCLC via specific upregulation of MMP-9. The co-expression of these markers also confers a poor prognosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The epidermal growth factor receptor (EGFR) is part of a family of plasma membrane receptor tyrosine kinases that control many important cellular functions, from growth and proliferation to cell death. Cyclooxygenase (COX)-2 is an enzyme which catalyses the conversion of arachidonic acid to prostagladins and thromboxane. It is induced by various inflammatory stimuli, including the pro-inflammatory cytokines, Interleukin (IL)-1β, Tumour Necrosis Factor (TNF)-α and IL-2. Both EGFR and COX-2 are over-expressed in non-small cell lung cancer (NSCLC) and have been implicated in the early stages of tumourigenesis. This paper considers their roles in the development and progression of lung cancer, their potential interactions, and reviews the recent progress in cancer therapies that are directed toward these targets. An increasing body of evidence suggests that selective inhibitors of both EGFR and COX-2 are potential therapeutic agents for the treatment of NSCLC, in the adjuvant, metastatic and chemopreventative settings. © 2002 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epithelial-to-mesenchymal transition (EMT) increases cell migration and invasion, and facilitates metastasis in multiple carcinoma types, but belies epithelial similarities between primary and secondary tumors. This study addresses the importance of mesenchymal-to-epithelial transition (MET) in the formation of clinically significant metastasis. The previously described bladder carcinoma TSU-Pr1 (T24) progression series of cell lines selected in vivo for increasing metastatic ability following systemic seeding was used in this study. It was found that the more metastatic sublines had acquired epithelial characteristics. Epithelial and mesenchymal phenotypes were confirmed in the TSU-Pr1 series by cytoskeletal and morphologic analysis, and by performance in a panel of in vitro assays. Metastatic ability was examined following inoculation at various sites. Epithelial characteristics associated with dramatically increased bone and soft tissue colonization after intracardiac or intratibial injection. In contrast, the more epithelial sublines showed decreased lung metastases following orthotopic inoculation, supporting the concept that EMT is important for the escape of tumor cells from the primary tumor. We confirmed the overexpression of the IIIc subtype of multiple fibroblast growth factor receptors (FGFR) through the TSU-Pr1 series, and targeted abrogation of FGFR2IIIc reversed the MET and associated functionality in this system and increased survival following in vivo inoculation in severe combined immunodeficient mice. This model is the first to specifically model steps of the latter part of the metastatic cascade in isogenic cell lines, and confirms the suspected role of MET in secondary tumor growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both the integrin and insulin-like growth factor binding protein (IGFBP) families independently play important roles in modulating tumor cell growth and progression. We present evidence for a specific cell surface localization and a bimolecular interaction between the αvβ3 integrin and IGFBP-2. The interaction, which could be specifically perturbed using vitronectin and αvβ3 blocking antibodies, was shown to modulate IGF-mediated cellular migration responses. Moreover, this interaction was observed in vivo and correlated with reduced tumor size of the human breast cancer cells, MCF-7β3, which overexpressed the αvβ3 integrin. Collectively, these results indicate that αvβ3 and IGFBP-2 act cooperatively in a negative regulatory manner to reduce tumor growth and the migratory potential of breast cancer cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fibroblast growth factors (FGFs) are potent mitogens, morphogens, and inducers of angiogenesis, and FGF signaling governs the genesis of diverse tissues and organs from the earliest stages. With such fundamental embryonic and homeostatic roles, it follows that aberrant FGF signaling underlies a variety of diseases. Pathological modifications to FGF expression are known to cause salivary gland aplasia and autosomal dominant hypophosphatemic rickets, while mutations in FGF receptors (FGFRs) result in a range of skeletal dysplasias. Anomalous FGF signaling is also associated with cancer development and progression. Examples include the overexpression of FGF2 and FGF6 in prostate cancer, and FGF8 overexpression in breast and prostate cancers. Alterations in FGF signaling regulators also impact tumorigenesis, which is exemplified by the down-regulation of Sprouty 1, a negative regulator of FGF signaling, in prostate cancer. In addition, several FGFRs are mutated in human cancers (including FGFR2 in gastric cancer and FGFR3 in bladder cancer). We recently identified intriguing alterations in the FGF pathway in a novel model of bladder carcinoma that consists of a parental cell line (TSU-Pr1/T24) and two sublines with increasing metastatic potential (TSU-Pr1-B1 and TSU-Pr1-B2), which were derived successively through in vivo cycling. It was found that the increasingly metastatic sublines (TSU-Pr1-B1 and TSU-Pr1-B2) had undergone a mesenchymal to epithelial transition. FGFR2IIIc expression, which is normally expressed in mesenchymal cells, was increased in the epithelial-like TSU-Pr1-B1 and TSU-Pr1-B2 sublines and FGFR2 knock-down was associated with the reversion of cells from an epithelial to a mesenchymal phenotype. These observations suggest that modified FGF pathway signaling should be considered when studying other cancer types.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The expression of neutrophil gelatinase-associated lipocalin (NGAL) has been shown to be upregulated in ovarian cancer cells. In this study, we report that the expression of immunoreactive NGAL (irNGAL) in ovarian tumors changes with disease grade and that this change is reflected in the concentration of NGAL in peripheral blood. A total of 59 ovarian tissues including normal, benign, borderline malignant and grades 1, 2 and 3 malignant were analyzed using immunohistochemistry. irNGAL was not present in normal ovaries and the NGAL expression was weak to moderate in benign tissues. Both borderline and grade 1 tumors displayed the highest amount of NGAL expression with moderate to strong staining, whereas in grade 2 and 3 tumors, the extent of staining was significantly less (p < 0.01) and staining intensity was weak to moderate. Staining in all cases was confined to the epithelium. NGAL expression was analyzed by ELISA in 62 serum specimens from normal and different grades of cancer patients. Compared to control samples, the NGAL concentration was 2 and 2.6-fold higher in the serum of patients with benign tumors and cancer patients with grade 1 tumors (p < 0.05) and that result was consistent with the expression of NGAL performed by Western blot. NGAL expression was evaluated by Western blot in an immortalized normal ovarian cell line (IOSE29) as well as ovarian cancer cell lines. Moderate to strong expression of NGAL was observed in epithelial ovarian cancer cell lines SKOV3 and OVCA433 while no expression of NGAL was evident in normal IOSE29 and mesenchyme-like OVHS1, PEO.36 and HEY cell lines. NGAL expression was downregulated in ovarian cancer cell lines undergoing epithelio-mesenchymal transition (EMT) induced by epidermal growth factor (EGF). Down-regulation of NGAL expression correlated with the upregulation of vimentin expression, enhanced cell dispersion and downregulation of E-cadherin expression, some of the hallmarks of EMT. EGF-induced EMT phenotypes were inhibited in the presence of AG1478, an inhibitor of EGF receptor tyrosine kinase activity. These data indicate that NGAL may be a good marker to monitor changes of benign to premalignant and malignant ovarian tumors and that the molecule may be involved in the progression of epithelial ovarian malignancies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypoxia and the development and remodeling of blood vessels and connective tissue in granulation tissue that forms in a wound gap following full-thickness skin incision in the rat were examined as a function of time. A 1.5 cm-long incisional wound was created in rat groin skin and the opposed edges sutured together. Wounds were harvested between 3 days and 16 weeks and hypoxia, percent vascular volume, cell proliferation and apoptosis, α-smooth muscle actin, vascular endothelial growth factor-A, vascular endothelial growth factor receptor-2, and transforming growth factor-β 1 expression in granulation tissue were then assessed. Hypoxia was evident between 3 and 7 days while maximal cell proliferation at 3 days (123.6 ± 22.2 cells/mm 2, p < 0.001 when compared with normal skin) preceded the peak percent vascular volume that occurred at 7 days (15.83 ± 1.10%, p < 0.001 when compared with normal skin). The peak in cell apoptosis occurred at 3 weeks (12.1 ± 1.3 cells/mm 2, p < 0.001 when compared with normal skin). Intense α-smooth muscle actin labeling in myofibroblasts was evident at 7 and 10 days. Vascular endothelial growth factor receptor-2 and vascular endothelial growth factor-A were detectable until 2 and 3 weeks, respectively, while transforming growth factor-β 1 protein was detectable in endothelial cells and myofibroblasts until 3-4 weeks and in the extracellular matrix for 16 weeks. Incisional wound granulation tissue largely developed within 3-7 days in the presence of hypoxia. Remodeling, marked by a decline in the percent vascular volume and increased cellular apoptosis, occurred largely in the absence of detectable hypoxia. The expression of vascular endothelial growth factor-A, vascular endothelial growth factor receptor-2, and transforming growth factor-β 1 is evident prior, during, and after the peak of vascular volume reflecting multiple roles for these factors during wound healing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endogenous ovarian estrogens and progestins appear to play a critical role in the development and progression of breast cancer. Local productions of growth factors probably also contribute to malignant proliferation, while production and activation of collagenolytic enzymes may be equally critical for local invasive processes. The current review focusses on characterization of growth factor-receptor systems operant in normal and malignant breast epithelium. In addition, the determinants of local invasion are reviewed: attachment, modality, and proteose secretion. Finally, data are discussed concerning the regulation of both proliferation and invasion by hormones and antihormonal agents in hormone-dependent breast cancer. The results suggest new potential pharmacologic targets to explore to suppress onset and progression of breast cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PMC42-LA cells display an epithelial phenotype: the cells congregate into pavement epithelial sheets in which E-cadherin and β-catenin are localized at cell-cell borders. They abundantly express cytokeratins, although 5% to 10% of the cells also express the mesenchymal marker vimentin. Stimulation of PMC42-LA cells with epidermal growth factor (EGF) leads to epithelio-mesenchymal transition-like changes including up-regulation of vimentin and down-regulation of E-cadherin. Vimentin expression is seen in virtually all cells, and this increase is abrogated by treatment of cells with an EGF receptor antagonist. The expression of the mesenchyme-associated extracellular matrix molecules fibronectin and chondroitin sulfate proteoglycan also increase in the presence of EGF. PMC42-LA cells adhere rapidly to collagen I, collagen IV, and laminin-1 substrates and markedly more slowly to fibronectin and vitronectin. EGF increases the speed of cell adhesion to most of these extracellular matrix molecules without altering the order of adhesive preference. EGF also caused a time-dependent increase in the motility of PMC42-LA cells, commensurate with the degree of vimentin staining. The increase in motility was at least partly chemokinetic, because it was evident both with and without chemoattractive stimuli. Although E-cadherin staining at cell-cell junctions disappeared in response to EGF, β-catenin persisted at the cell periphery. Further analysis revealed that N-cadherin was present at the cell-cell junctions of untreated cells and that expression was increased after EGF treatment. N- and E-cadherin are not usually coexpressed in human carcinoma cell lines but can be coexpressed in embryonic tissues, and this may signify an epithelial cell population prone to epithelio-mesenchymal-like responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Olfactomedin-4 (OLFM-4) is an extracellular matrix protein that is highly expressed in human endometrium. We have examined the regulation and function of OLFM-4 in normal endometrium and in cases of endometriosis and endometrial cancer. OLFM-4 expression levels are highest in proliferative-phase endometrium, and 17 beta-estradiol up-regulates OLFM-4 mRNA in endometrial explant cultures. Using the luciferase reporter under control of the OLFM-4 promoter, it was shown that both 17 beta-estradiol and OH-tamoxifen induce luciferase activity, and epidermal growth factor receptor-1 is required for this estrogenic response. In turn, EGF activates the OLFM-4 promoter, and estrogen receptor-alpha is needed for the complete EGF response. The cellular functions of OLFM-4 were examined by its expression in OLFM-4-negative HEK-293 cells, which resulted in decreased vimentin expression and cell adherence as well as increased apoptosis resistance. In cases of endometriosis and endometrial cancer, OLFM-4 expression correlated with the presence of epidermal growth factor receptor-1 and estrogen receptor-alpha (or estrogen signaling). An increase of OLFM-4 mRNA was observed in the endometrium of endometriosis patients. No change in OLFM-4 expression levels were observed in patients with endometrial cancer relative with controts. In conclusion, cross-talk between estrogen and EGF signaling regulates OLFM-4 expression. The role of OLFM-4 in endometrial tissue remodeling before the secretory phase and during the predisposition and early events in endometriosis can be postulated but requires additional investigation. (Am J Pathol 2010, 177:2495-2508: DOI: 10.2353/ajpath.2010.100026