981 resultados para trafficking in organs
Resumo:
In familial hyperaldosteronism type I (FH-I), inheritance of a hybrid 11 beta-hydroxylase/aldosterone synthase gene causes ACTH-regulated aldosterone overproduction. In an attempt to understand the marked variability in hypertension severity in FH-I, we compared clinical and biochemical characteristics of 9 affected individuals with mild hypertension (normotensive or onset of hypertension after 15 yr, blood pressure never >160/100 mm Hg, less than or equal to 1 medication required to control hypertension, no history of stroke, age >18 yr when studied) with those of 17 subjects with severe hypertension (onset before 15 yr, or systolic blood pressure >180 mm Hg or diastolic blood pressure >120 mm Hg at least once, or greater than or equal to 2 medications, or history of stroke). Severe hypertension was more frequent in males (11 of 13 males vs. 6 of 13 females; P
Resumo:
No Abstract
Resumo:
A novel MRI method-diffusion tensor imaging-was used to compare the integrity of several white matter fibre tracts in patients with probable Alzheimer's disease. Relative to normal controls, patients with probable Alzheimer's disease showed a highly significant reduction in the integrity of the association white matter fibre tracts, such as the splenium of the corpus callosum, superior longitudinal fasciculus, and cingulum. By contrast, pyramidal tract integrity seemed unchanged. This novel finding is consistent with the clinical presentation of probable Alzheimer's disease, in which global cognitive decline is a more prominent feature than motor disturbance.
Resumo:
Sorghum [Sorghum bicolor (L,) Moench] hybrids containing the stay-green trait retain more photosynthetically active leaves under drought than do hybrids that do not contain this trait. Since the Longevity and photosynthetic capacity of a leaf are related to its N status, it is important to clarify the role of N in extending leaf greenness in stay-green hybrids. Field studies were conducted in northeastern Australia to examine the effect of three water regimes and nine hybrids on N uptake and partitioning among organs. Nine hybrids varying in the B35 and KS19 sources of stay-green were grown under a fully irrigated control, post-flowering water deficit, and terminal water deficit. For hybrids grown under terminal water deficit, stay-green was viewed as a consequence of the balance between N demand by the grain and N supply during gain filling. On the demand side, grain numbers were 16% higher in the four stay-green than in the five senescent hybrids. On the supply side, age-related senescence provided an average of 34 and 42 kg N ha(-1) for stay-green and senescent hybrids, respectively. In addition, N uptake during grain filling averaged 116 and 82 kg ha(-1) in stay-green and senescent hybrids. Matching the N supply from these two sources with grain N demand found that the shortfall in N supply for grain filling in the stay-green and senescent hybrids averaged 32 and 41 kg N ha(-1) resulting in more accelerated leaf senescence in the senescent hybrids. Genotypic differences in delayed onset and reduced rate of leaf senescence were explained by differences in specific leaf nitrogen and N uptake during grain filling. Leaf nitrogen concentration at anthesis was correlated with onset (r = 0.751**, n = 27) and rate (r = -0.783**, n = 27) of leaf senescence ender terminal water deficit.
Resumo:
Elasmobranchs have hundreds of tiny sensory organs, called pit organs, scattered over the skin surface. The pit organs were noted in many early studies of the lateral line, but their exact nature has long remained a mystery. Although pit organs were known to be innervated by the lateral line nerves, and light micrographs suggested that they were free neuromasts, speculation that they may be external taste buds or chemoreceptors has persisted until recently Electron micrographs have now revealed that the pit organs are indeed free neuromasts. Their functional and behavioural role(s), however, are yet to be investigated.
Resumo:
Objectives. The present study was designed to test the diathesis-stress components of Beck's cognitive theory of depression and the reformulated learned helplessness model of depression in the prediction of postpartum depressive symptomatology. Design and methods. The research used a two-wave longitudinal design-data were collected from 65 primiparous women during their third trimester of pregnancy and then 6 weeks after the birth. Cognitive vulnerability and initial depressive symptomatology were assessed at Time 1, whereas stress and postpartum depressive symptomatology were assessed at Time 2. Results. There was some support for the diathesis-stress component of Beck's cognitive theory, to the extent that the negative relationship between both general and maternal-specific dysfunctional attitudes associated with performance evaluation and Time 2 depressive symptomatology was strongest for women who reported high levels of parental stress. In a similar vein, the effects of dysfunctional attitudes (general and maternal-specific) associated with performance evaluation and need for approval (general measure only) on partner ratings of emotional distress were evident only among those women whose infants were rated as being temperamentally difficult. Conclusion. There was no support for the diathesis-stress component of the reformulated learned helplessness model of depression; however, there was some support for the diathesis-stress component of Beck's cognitive theory.
Resumo:
A number of techniques have been developed to study the disposition of drugs in the head and, in particular, the role of the blood-brain barrier (BBB) in drug uptake. The techniques can be divided into three groups: in-vitro, in-vivo and in-situ. The most suitable method depends on the purpose(s) and requirements of the particular study being conducted. In-vitro techniques involve the isolation of cerebral endothelial cells so that direct investigations of these cells can be carried out. The most recent preparations are able to maintain structural and functional characteristics of the BBB by simultaneously culturing endothelial cells with astrocytic cells,The main advantages of the in-vitro methods are the elimination of anaesthetics and surgery. In-vivo methods consist of a diverse range of techniques and include the traditional Brain Uptake Index and indicator diffusion methods, as well as microdialysis and positron emission tomography. In-vivo methods maintain the cells and vasculature of an organ in their normal physiological states and anatomical position within the animal. However, the shortcomings include renal acid hepatic elimination of solutes as well as the inability to control blood flow. In-situ techniques, including the perfused head, are more technically demanding. However, these models have the ability to vary the composition and flow rate of the artificial perfusate. This review is intended as a guide for selecting the most appropriate method for studying drug uptake in the brain.
Resumo:
Background: T lymphocytes and mast cells infiltrate the lamina propria in oral lichen planus (OLP). Chemokines and their receptors are involved in T cell and mast cell migration and accumulation during the inflammatory process. Methods: In the present study, we investigated the role of RANTES and its receptors in OLP using immunohistochemistry, RT-PCR and an in vitro chemotaxis assay. Results: RANTES and CCR1 were expressed on T cells and mast cells in OLP, while OLP lesional T cell supernatants stimulated CCR1 mRNA expression in a human leukemia mast cell line (HMC-1). TNF-alpha stimulated CCR1, CCR4 and CCR5 mRNA expression in the same cell line. OLP lesional T cell supernatants stimulated HMC-1 migration, which was partly inhibited by anti-RANTES antibody. Conclusions: The present study shows, for the first time, the distribution of RANTES and CCR1 in OLR It is hypothesized that RANTES and CCR1 may play important roles in mast cell trafficking and related events in OLP.
Resumo:
Aberrant dendritic cell (DC) development and function may contribute to autoimmune disease susceptibility. To address this hypothesis at the level of myeloid lineage-derived DC we compared the development of DC from bone marrow progenitors in vitro and DC populations in vivo in autoimmune diabetes-prone nonbese diabetic (NOD) mice, recombinant congenic nonbese diabetes-resistant (NOR) mice, and unrelated BALB/c and C57BL/6 (BL/6) mice. In GM-CSF/IL-4-supplemented bone marrow cultures, DC developed in significantly greater numbers from NOD than from NOR, BALB/c, and BL/6 mice. Likewise, DC developed in greater numbers from sorted (lineage(-)IL-7Ralpha(-)SCA-1(-)c-kit(+)) NOD myeloid progenitors in either GM-CSF/IL-4 or GM-CSF/stem cell factor (SCF)/TNF-alpha. [H-3]TdR incorporation indicated that the increased generation of NOD DC was due to higher levels of myeloid progenitor proliferation. Generation of DC with the early-acting hematopoietic growth factor, flt3 ligand, revealed that while the increased DC-generative capacity of myeloid-committed progenitors was restricted to NOD cells, early lineage-uncommitted progenitors from both NOD and NOR had increased DC-gencrative capacity relative to BALB/c and BL/6. Consistent with these findings, NOD and NOR mice had increased numbers of DC in blood and thymus and NOD had an increased proportion of the putative myeloid DC (CD11c(+)CD11b(+)) subset within spleen. These findings demonstrate that diabetes-prone NOD mice exhibit a myeloid lineage-specific increase in DC generative capacity relative to diabetes-resistant recombinant congenic NOR mice. We propose that an imbalance favoring development of DC from myeloid-committed progenitors predisposes to autoimmune disease in NOD mice.
Resumo:
Vascular casts of 3 species of Chondrichthyes, 1 of Dipnoi, 1 of Chondrostei and 14 species of the Teleostei were examined by light and scanning electron microscopy in order to give a qualitative and quantitative analysis of interarterial anastomoses (iaas) that indicate the presence (or absence) of a secondary vascular system (SVS). Anastomoses were found to originate from a variety of different primary blood vessels, many of which have not been previously identified as giving rise to secondary vessels. Segmental arteries derived from the dorsal aorta and supplying body musculature were major sites of origin of the SVS, although there was considerable variation in where, in the hierarchy of arterial branching, the anastomoses occurred. The degree of investment in a SVS was species specific, with more active species having a higher degree of secondary vascularisation. This difference was quantified using an absolute count of iaas between Anguilla reinhardtii and Trachinotus baillonii. A range of general features of the SVS is also described. No evidence of iaas was found on the coeliac, mesenteric or renal circulation in any species. Evidence of iaas was lacking in the dipnoan and chondrichthyan species examined, suggesting that a SVS is restricted to Actinopterygii. The presence and distribution of a SVS does not appear to be exclusively linked to phylogenetic position, but rather to the physiological adaptation of the species.
Resumo:
We have identified truncating mutations in the human DLG3 ( neuroendocrine dlg) gene in 4 of 329 families with moderate to severe X-linked mental retardation. DLG3 encodes synapse-associated protein 102 (SAP102), a member of the membrane-associated guanylate kinase protein family. Neuronal SAP102 is expressed during early brain development and is localized to the postsynaptic density of excitatory synapses. It is composed of three amino-terminal PDZ domains, an src homology domain, and a carboxyl-terminal guanylate kinase domain. The PDZ domains interact directly with the NR2 subunits of the NMDA glutamate receptor and with other proteins responsible for NMDA receptor localization, immobilization, and signaling. The mutations identified in this study all introduce premature stop codons within or before the third PDZ domain, and it is likely that this impairs the ability of SAP102 to interact with the NMDA receptor and/or other proteins involved in downstream NMDA receptor signaling pathways. NMDA receptors have been implicated in the induction of certain forms of synaptic plasticity, such as long-term potentiation and long-term depression, and these changes in synaptic efficacy have been proposed as neural mechanisms underlying memory and learning. The disruption of NMDA receptor targeting or signaling, as a result of the loss of SAP102, may lead to altered synaptic plasticity and may explain the intellectual impairment observed in individuals with DLG3 mutations.
Resumo:
Perianth development is specifically disrupted in mutants of the PETAL LOSS (PTL) gene, particularly petal initiation and orientation. We have cloned PTL and show that it encodes a plant-specific trihelix transcription factor, one of a family previously known only as regulators of light-controlled genes. PTL transcripts were detected in the early-developing flower, in four zones between the initiating sepals and in their developing margins. Strong misexpression of PTL in a range of tissues universally results in inhibition of growth, indicating that its normal role is to suppress growth between initiating sepals, ensuring that they remain separate. Consistent with this, sepals are sometimes fused in ptl single mutants, but much more frequently in double mutants with either of the organ boundary genes cup-shaped cotyledon1 or 2. Expression of PTL within the newly arising sepals is apparently prevented by the PINOID auxin-response gene. Surprisingly, PTL expression could not be detected in petals during the early stages of their development, so petal defects associated with PTL loss of function may be indirect, perhaps involving disruption to signalling processes caused by overgrowth in the region. PTL-driven reporter gene expression was also detected at later stages in the margins of expanding sepals, petals and stamens, and in the leaf margins; thus, PTL may redundantly dampen lateral outgrowth of these organs, helping define their final shape.
Resumo:
Diadromous freshwater shrimps are exposed to brackish water both as an obligatory part of their larval life cycle and during adult reproductive migration; their well-developed osmoregulatory ability is crucial to survival in such habitats. This study examines gill microsomal Na,K-ATPase (K-phosphatase activity) kinetics and protein profiles in the freshwater shrimp Macrobrachium amazonicum when in fresh water and after 10-days of acclimation to brackish water (21 parts per thousand salinity), as well as potential routes of Na(+) uptake across the gill epithelium in fresh water. On acclimation, K-phosphatase activity decreases 2.5-fold, Na,K-ATPase alpha-subunit expression declines, total protein expression pattern is markedly altered, and enzyme activity becomes redistributed into different density membrane fractions, possibly reflecting altered vesicle trafficking between the plasma membrane and intracellular compartments. Ultrastructural analysis reveals an intimately coupled pillar cell-septal cell architecture and shows that the cell membrane interfaces between the external medium and the hemolymph are greatly augmented by apical pillar cell evaginations and septal cell inviginations, respectively. These findings ire discussed regarding the putative movement of Na(+) across the pillar cell interfaces and into the hemolymph via the septal cells, powered by the Na,K-ATPase located in their invaginations. (C) 2008 Elsevier Inc. All rights reserved.