934 resultados para time-dependent behaviour of brittle rocks
Resumo:
The ability to represent time is an essential component of cognition but its neural basis is unknown. Although extensively studied both behaviorally and electrophysiologically, a general theoretical framework describing the elementary neural mechanisms used by the brain to learn temporal representations is lacking. It is commonly believed that the underlying cellular mechanisms reside in high order cortical regions but recent studies show sustained neural activity in primary sensory cortices that can represent the timing of expected reward. Here, we show that local cortical networks can learn temporal representations through a simple framework predicated on reward dependent expression of synaptic plasticity. We assert that temporal representations are stored in the lateral synaptic connections between neurons and demonstrate that reward-modulated plasticity is sufficient to learn these representations. We implement our model numerically to explain reward-time learning in the primary visual cortex (V1), demonstrate experimental support, and suggest additional experimentally verifiable predictions.
Resumo:
Time-space relations of extension and volcanism place critical constraints on models of Basin and Range extensional processes. This paper addresses such relations in a 130-km-wide transect in the eastern Great Basin, bounded on the east by the Ely Springs Range and on the west by the Grant and Quinn Canyon ranges. Stratigraphic and structural data, combined with 40Ar/39Ar isotopic ages of volcanic rocks, document a protracted but distinctly episodic extensional history. Field relations indicate four periods of faulting. Only one of these periods was synchronous with nearby volcanic activity, which implies that volcanism and faulting need not be associated closely in space and time. Based on published dates and the analyses reported here, the periods of extension were (1) prevolcanic (pre-32 Ma), (2) early synvolcanic (30 to 27 Ma), (3) immediately postvolcanic (about 16 to 14 Ma), and (4) Pliocene to Quaternary. The break between the second and third periods is distinct. The minimum gap between the first two periods is 2 Ma, but the separation may be much larger. Temporal separation of the last two periods is only suggested by the stratigraphic record and cannot be rigorously demonstrated with present data. The three younger periods of faulting apparently occurred across the entire transect. The oldest period is recognized only at the eastern end of the transect, but appears to correlate about 150 km northward along strike with extension in the Northern Snake Range-Kern Mountains area. Therefore the oldest period also is regional in extent, but affected a different area than that affected by younger periods. This relation suggests that distinct extensional structures and master detachment faults were active at different times. The correlation of deformation periods of a few million years duration across the Railroad Valley-Pioche transect suggests that the scale of active extensional domains in the Great Basin may be greater than 100 km across strike.
Resumo:
For clinical optoacoustic imaging, linear probes are preferably used because they allow versatile imaging of the human body with real-time display and free-hand probe guidance. The two-dimensional (2-D) optoacoustic image obtained with this type of probe is generally interpreted as a 2-D cross-section of the tissue just as is common in echo ultrasound. We demonstrate in three-dimensional simulations, phantom experiments, and in vivo mouse experiments that for vascular imaging this interpretation is often inaccurate. The cylindrical blood vessels emit anisotropic acoustic transients, which can be sensitively detected only if the direction of acoustic radiation coincides with the probe aperture. Our results reveal for this reason that the signal amplitude of different blood vessels may differ even if the vessels have the same diameter and initial pressure distribution but different orientation relative to the imaging plane. This has important implications for the image interpretation, for the probe guidance technique, and especially in cases when a quantitative reconstruction of the optical tissue properties is required.
Resumo:
When subjects are required to generate a random sequence of numbers they typically produce too many forward and backward 'counts' (e.g. 5-6, 4-3). This counting bias is interpreted as the consequence of an interference by overlearned tendencies to arrange numbers according to their natural order. Inhibition of such well-learned routines is known to rely on frontal lobe functioning. We examined differential effects of slow (1 Hz) and fast (10 Hz) repetitive transcranial magnetic stimulation (rTMS) over the left or right dorsolateral prefrontal cortex (DLPFC) on random number generation (RNG) performance. Eighteen healthy men performed an RNG task. Those subjects stimulated over the left DLPFC showed a frequency-dependent rTMS effect: counting bias was significantly reduced after the 1 Hz stimulation compared with baseline, but significantly exaggerated after the 10 Hz stimulation compared with 1 Hz stimulation. In contrast, the sequences of the subjects stimulated over the right DLPFC showed the well-known excess of counting in all conditions (i.e. baseline, 1 Hz and 10 Hz). These findings confirm the functional importance of specifically the left DLPFC in sequential response production and show, for the first time, that rTMS affects cognitive processing in a frequency-dependent manner.
Resumo:
The X‐linked inhibitor of apoptosis protein (XIAP) is a potent caspase inhibitor, best known for its anti‐apoptotic function in cancer. During apoptosis, XIAP is antagonized by SMAC, which is released from the mitochondria upon caspase‐mediated activation of BID. Recent studies suggest that XIAP is involved in immune signaling. Here, we explore XIAP as an important mediator of an immune response against the enteroinvasive bacterium Shigella flexneri, both in vitro and in vivo. Our data demonstrate for the first time that Shigella evades the XIAP‐mediated immune response by inducing the BID‐dependent release of SMAC from the mitochondria. Unlike apoptotic stimuli, Shigella activates the calpain‐dependent cleavage of BID to trigger the release of SMAC, which antagonizes the inflammatory action of XIAP without inducing apoptosis. Our results demonstrate how the cellular death machinery can be subverted by an invasive pathogen to ensure bacterial colonization.
Resumo:
INTRODUCTION Nanosized particles may enable therapeutic modulation of immune responses by targeting dendritic cell (DC) networks in accessible organs such as the lung. To date, however, the effects of nanoparticles on DC function and downstream immune responses remain poorly understood. METHODS Bone marrow-derived DCs (BMDCs) were exposed in vitro to 20 or 1,000 nm polystyrene (PS) particles. Particle uptake kinetics, cell surface marker expression, soluble protein antigen uptake and degradation, as well as in vitro CD4(+) T-cell proliferation and cytokine production were analyzed by flow cytometry. In addition, co-localization of particles within the lysosomal compartment, lysosomal permeability, and endoplasmic reticulum stress were analyzed. RESULTS The frequency of PS particle-positive CD11c(+)/CD11b(+) BMDCs reached an early plateau after 20 minutes and was significantly higher for 20 nm than for 1,000 nm PS particles at all time-points analyzed. PS particles did not alter cell viability or modify expression of the surface markers CD11b, CD11c, MHC class II, CD40, and CD86. Although particle exposure did not modulate antigen uptake, 20 nm PS particles decreased the capacity of BMDCs to degrade soluble antigen, without affecting their ability to induce antigen-specific CD4(+) T-cell proliferation. Co-localization studies between PS particles and lysosomes using laser scanning confocal microscopy detected a significantly higher frequency of co-localized 20 nm particles as compared with their 1,000 nm counterparts. Neither size of PS particle caused lysosomal leakage, expression of endoplasmic reticulum stress gene markers, or changes in cytokines profiles. CONCLUSION These data indicate that although supposedly inert PS nanoparticles did not induce DC activation or alteration in CD4(+) T-cell stimulating capacity, 20 nm (but not 1,000 nm) PS particles may reduce antigen degradation through interference in the lysosomal compartment. These findings emphasize the importance of performing in-depth analysis of DC function when developing novel approaches for immune modulation with nanoparticles.
Resumo:
PURPOSE Mechanical loading is an important parameter that alters the homeostasis of the intervertebral disc (IVD). Studies have demonstrated the role of compression in altering the cellular metabolism, anabolic and catabolic events of the disc, but little is known how complex loading such as torsion-compression affects the IVD cell metabolism and matrix homeostasis. Studying how the duration of torsion affects disc matrix turnover could provide guidelines to prevent overuse injury to the disc and suggest possible beneficial effect of torsion. The aim of the study was to evaluate the biological response of the IVD to different durations of torsional loading. METHODS Intact bovine caudal IVD were isolated for organ culture in a bioreactor. Different daily durations of torsion were applied over 7 days at a physiological magnitude (±2°) in combination with 0.2 MPa compression, at a frequency of 1 Hz. RESULTS Nucleus pulpous (NP) cell viability and total disc volume decreased with 8 h of torsion-compression per day. Gene expression analysis suggested a down-regulated MMP13 with increased time of torsion. 1 and 4 h per day torsion-compression tended to increase the glycosaminoglycans/hydroxyproline ratio in the NP tissue group. CONCLUSIONS Our result suggests that load duration thresholds exist in both torsion and compression with an optimal load duration capable of promoting matrix synthesis and overloading can be harmful to disc cells. Future research is required to evaluate the specific mechanisms for these observed effects.
Resumo:
BACKGROUND Acute myeloid leukaemia mainly affects elderly people, with a median age at diagnosis of around 70 years. Although about 50-60% of patients enter first complete remission upon intensive induction chemotherapy, relapse remains high and overall outcomes are disappointing. Therefore, effective post-remission therapy is urgently needed. Although often no post-remission therapy is given to elderly patients, it might include chemotherapy or allogeneic haemopoietic stem cell transplantation (HSCT) following reduced-intensity conditioning. We aimed to assess the comparative value of allogeneic HSCT with other approaches, including no post-remission therapy, in patients with acute myeloid leukaemia aged 60 years and older. METHODS For this time-dependent analysis, we used the results from four successive prospective HOVON-SAKK acute myeloid leukaemia trials. Between May 3, 2001, and Feb 5, 2010, a total of 1155 patients aged 60 years and older were entered into these trials, of whom 640 obtained a first complete remission after induction chemotherapy and were included in the analysis. Post-remission therapy consisted of allogeneic HSCT following reduced-intensity conditioning (n=97), gemtuzumab ozogamicin (n=110), chemotherapy (n=44), autologous HSCT (n=23), or no further treatment (n=366). Reduced-intensity conditioning regimens consisted of fludarabine combined with 2 Gy of total body irradiation (n=71), fludarabine with busulfan (n=10), or other regimens (n=16). A time-dependent analysis was done, in which allogeneic HSCT was compared with other types of post-remission therapy. The primary endpoint of the study was 5-year overall survival for all treatment groups, analysed by a time-dependent analysis. FINDINGS 5-year overall survival was 35% (95% CI 25-44) for patients who received an allogeneic HSCT, 21% (17-26) for those who received no additional post-remission therapy, and 26% (19-33) for patients who received either additional chemotherapy or autologous HSCT. Overall survival at 5 years was strongly affected by the European LeukemiaNET acute myeloid leukaemia risk score, with patients in the favourable risk group (n=65) having better 5-year overall survival (56% [95% CI 43-67]) than those with intermediate-risk (n=131; 23% [19-27]) or adverse-risk (n=444; 13% [8-20]) acute myeloid leukaemia. Multivariable analysis with allogeneic HSCT as a time-dependent variable showed that allogeneic HSCT was associated with better 5-year overall survival (HR 0·71 [95% CI 0·53-0·95], p=0·017) compared with non-allogeneic HSCT post-remission therapies or no post-remission therapy, especially in patients with intermediate-risk (0·82 [0·58-1·15]) or adverse-risk (0.39 [0·21-0·73]) acute myeloid leukaemia. INTERPRETATION Collectively, the results from these four trials suggest that allogeneic HSCT might be the preferred treatment approach in patients 60 years of age and older with intermediate-risk and adverse-risk acute myeloid leukaemia in first complete remission, but the comparative value should ideally be shown in a prospective randomised study. FUNDING None.
Resumo:
Laying hens in loose-housing systems select a nest daily in which to lay their eggs among many identical looking nests, they often prefer corner nests. We investigated whether heterogeneity in nest curtain appearance – via colours and symbols – would influence nest selection and result in an even distribution of eggs among nests. We studied pre-laying behaviour in groups of 30 LSL hens across two consecutive trials with eight groups per trial. Half of the groups had access to six identical rollaway group-nests, while the others had access to six nests of the same type differing in outer appearance. Three colours (red, green, yellow) and three black symbols (cross, circle, rectangle) were used to create three different nest curtain designs per pen. Nest position and the side of entrance to the pens were changed at 28 and 30 weeks of age, respectively, whereby the order of changes was counterbalanced across trials. Nest positions were numbered 1–6, with nest position 1 representing the nest closest to the pen entrance. Eggs were counted per nest daily from week of age 18 to 33. Nest visits were recorded individually with an RFID system for the first 5 h of light throughout weeks 24–33. Hens with access to nests differing in curtain appearance entered fewer nests daily than hens with identical nests throughout the study but both groups entered more nests with increasing age. We found no other evidence that curtain appearance affected nest choice and hens were inconsistent in their daily nest selection. A high proportion of eggs were laid in corner nests especially during the first three weeks of lay. The number of visits per egg depended upon nest position and age: it increased with age and was higher after the nest position change than before in nest position 1, whereas it stayed stable over time in nest position 6. At 24 weeks of age, gregarious nest visits (hens visiting an occupied nest when there was at least one unoccupied nest) and solitary nest visits (hens visiting an unoccupied nest when there was at least one occupied nest) accounted for a similar amount of nest visits, however, after the door switch, gregarious nest visits made up more than half of all nest visits, while the number of solitary nest visits had decreased. The visual cues were too subtle or inadequate for hens to develop individual preferences while nest position, entrance side, age and nest occupancy affected the quantity and type of nest visits.
Resumo:
Levodopa, the precursor of dopamine, is currently the drug of choice in the treatment of Parkinson's disease. Recently, two direct dopamine agonists, bromocriptine and pergolide, have been tested for the treatment of Parkinson's disease because of reduced side effects compared to levodopa. Few studies have evaluated the effects of long-term treatment of dopamine agonists on dopamine receptor regulation in the central nervous system. Thus, the purpose of this study was to determine whether chronic dopamine agonist treatment produces a down-regulation of striatal dopamine receptor function and to compare the results of the two classes of dopaminergic drugs.^ Levodopa with carbidopa, a peripheral decarboxylase inhibitor, was administered orally to rats whereas bromocriptine and pergolide were injected intraperitoneally once daily. Several neurochemical parameters were examined from 1 to 28 days.^ Levodopa minimally decreased striatal D-1 receptor activity but increased the number of striatal D-2 binding sites. Levodopa increased the V(,max) of tyrosine hydroxylase (TH) in all brain regions tested. Protein blot analysis of striatal TH indicated a significant increase in the amount of TH present. Dopamine-beta-hydroxylase (DBH) activity was markedly decreased in all brain regions studied and mixing experiments of control and drug-treated cortices did not show the presence of an increased level of endogenous inhibitors.^ Bromocriptine treatment decreased the number of D-2 binding sites. Striatal TH activity was decreased and protein blot analysis indicated no change in TH quantity. The specificity of bromocriptine for striatal TH suggested that bromocriptine preferentially interacts with dopamine autoreceptors.^ Combination levodopa-bromocriptine was administered for 12 days. There was a decrease in both D-1 receptor activity and D-2 binding sites, and a decrease in brain HVA levels suggesting a postsynaptic receptor action. Pergolide produced identical results to the combination levodopa-bromocriptine studies.^ In conclusion, combination levodopa-bromocriptine and pergolide treatments exhibited the expected down-regulation of dopamine receptor activity. In contrast, levodopa appeared to up-regulate dopamine receptor activity. Thus, these data may help to explain, on a biochemical basis, the decrease in the levodopa-induced side effects noted with combination levodopa-bromocriptine or pergolide therapies in the treatment of Parkinson's disease. ^
Resumo:
Chronic administration of psychomotor stimulants has been reported to produce behavioral sensitization to its effects on motor activity. This adaptation may be related to the pathophysiology of recurrent psychiatric disorders. Since disturbances in circadian rhythms are also found in many of these disorders, the relationship between sensitization and chronobiological factors became of interest. Therefore, a computerized monitoring system investigated the following: whether repeated exposure to methylphenidate (MPD) and amphetamine (AMP) could produce sensitization to its locomotor effects in the rat; whether sensitization to MPD and AMP was dependent on the circadian time of drug administration; whether the baseline levels of locomotor activity would be effected by repeated exposure to MPD and AMP; whether the expression of a sensitized response could be affected by the photoperiod; and whether MK-801, a non-competitive NMDA antagonist, could disrupt the development of sensitization to MPD. Dawley rats were housed in test cages and motor activity was recorded continuously for 16 days. The first 2 days served as baseline for each rat, and on day 3 each rat received a saline injection. The locomotor response to 0.6, 2.5, or 10 mg/kg of MPD was tested on day 4, followed by five days of single injections of 2.5 mg/kg MPD (days 5–9). After five days without injection (days 10–14) rats were re-challenged (day 15) with the same doses they received on day 4. There were three separate dose groups ran at four different times of administration, 08:00, 14:00, 20:00, or 02:00 (i.e. 12 groups). The same protocol was conducted with AMP with the doses of 0.3, 0.6, and 1.2 mg/kg given on day 4 and 15, and 0.6 mg/kg AMP as the repeated dose on days 5 to 9. In the second set of experiments only sensitization to MPD was investigated. The expression of the sensitized response was dose-dependent and mainly observed with challenge of the lower dose groups. The development of sensitization to MPD and ANT was differentially time-dependent. For MPD, the most robust sensitization occurred during the light phase, with no sensitization during the middle of the dark phase. (Abstract shortened by UMI.) ^
Resumo:
Most studies of p53 function have focused on genes transactivated by p53. It is less widely appreciated that p53 can repress target genes to affect a particular cellular response. There is evidence that repression is important for p53-induced apoptosis and cell cycle arrest. It is less clear if repression is important for other p53 functions. A comprehensive knowledge of the genes repressed by p53 and the cellular processes they affect is currently lacking. We used an expression profiling strategy to identify p53-responsive genes following adenoviral p53 gene transfer (Ad-p53) in PC3 prostate cancer cells. A total of 111 genes represented on the Affymetrix U133A microarray were repressed more than two fold (p ≤ 0.05) by p53. An objective assessment of array data quality was carried out using RT-PCR of 20 randomly selected genes. We estimate a confirmation rate of >95.5% for the complete data set. Functional over-representation analysis was used to identify cellular processes potentially affected by p53-mediated repression. Cell cycle regulatory genes exhibited significant enrichment (p ≤ 5E-28) within the repressed targets. Several of these genes are repressed in a p53-dependent manner following DNA damage, but preceding cell cycle arrest. These findings identify novel p53-repressed targets and indicate that p53-induced cell cycle arrest is a function of not only the transactivation of cell cycle inhibitors (e.g., p21), but also the repression of targets that act at each phase of the cell cycle. The mechanism of repression of this set of p53 targets was investigated. Most of the repressed genes identified here do not harbor consensus p53 DNA binding sites but do contain binding sites for E2F transcription factors. We demonstrate a role for E2F/RB repressor complexes in our system. Importantly, p53 is found at the promoter of CDC25A. CDC25A protein is rapidly degraded in response to DNA damage. Our group has demonstrated for the first time that CDC25A is also repressed at the transcript level by p53. This work has important implications for understanding the DNA damage cell cycle checkpoint response and the link between E2F/RB complexes and p53 in the repression of target genes. ^
Resumo:
4HPR is a synthetic retinoid that has shown chemopreventive and therapeutic efficacy against premalignant and malignant lesions including oral leukoplakia, ovarian and breast cancer, and neuroblastoma. 4HPR induces apoptosis in various cancer cells and production of reactive oxygen species (ROS) has been suggested as a possible cause underlying these effects. However, the mechanisms governing these effects by 4HPR are not fully elucidated. In this study, we explored the mechanisms of 4HPR-induced ROS increase and apoptosis in human cancer cells. ^ First, we identified genes modulated by 4HPR using oligonucleotide gene expression arrays and found that they fall into specific functional canonical pathways and gene networks using Ingenuity Pathways Analysis®. Further analysis has shown that 4HPR induced up-regulation of Endoplasmic Reticulum (ER)-related genes such as Heat shock proteins 70 and 90 and the transcriptional factor, GADD153. These findings were validated using quantitative real-time PCR. ^ Second, we found that 4HPR induced extensive ER stress evidenced by dilation of the ER and endoribonuclease-mediated splicing and activation of the transcriptional factor, XBP-1. In addition, 4HPR induced the up-regulation of various ER stress-related genes and their protein products, as well as cleavage and activation of the ER specific Caspase-4. Concomitantly with XBP-1 splicing, all of these effects were dependent on ROS generation by 4HPR. Furthermore, chemical inhibition and RNA interference studies revealed a novel pro-apoptotic role for HSP70/A1A in 4HPR-mediated apoptosis. ^ Third, we observed rapid activation of the small GTPase Rac by 4HPR which was upstream of ROS generation. Inhibition of Rac activity or silencing of its expression by RNA interference inhibited ROS generation and apoptosis induction by 4HPR. siRNA targeting PAK1 and expression of a dominant negative Rac, decreased 4HPR-mediated ROS generation, while expression of a constitutive active Rac increased basal and 4HPR-induced ROS generation and PARP cleavage. Furthermore, metastatic cancer cells exhibited higher Rac activation, ROS generation, and cell growth inhibition due to 4HPR exposure compared to their primary cancer cell counterparts. ^ These findings provide novel insights into 4HPR-mediated ROS generation and apoptosis induction and support the use of ROS inducing agents such as 4HPR against metastatic cancer cells. ^
Resumo:
A general model for the illness-death stochastic process with covariates has been developed for the analysis of survival data. This model incorporates important baseline and time-dependent covariates to make proper adjustment for the transition probabilities and survival probabilities. The follow-up period is subdivided into small intervals and a constant hazard is assumed for each interval. An approximation formula is derived to estimate the transition parameters when the exact transition time is unknown.^ The method developed is illustrated by using data from a study on the prevention of the recurrence of a myocardial infarction and subsequent mortality, the Beta-Blocker Heart Attack Trial (BHAT). This method provides an analytical approach which simultaneously includes provision for both fatal and nonfatal events in the model. According to this analysis, the effectiveness of the treatment can be compared between the Placebo and Propranolol treatment groups with respect to fatal and nonfatal events. ^