941 resultados para tilt angle
Resumo:
Ocean Drilling Program Leg 115 was designed to study Neogene sedimentation history in the western Indian Ocean Basin as well as the Cenozoic evolution of the Reunion hotspot. We describe the paleomagnetic analysis of the sediments recovered on this leg, focusing on the sites that provided the most readily interpretable data: Sites 706, 709, 710, and 711. Sediments from Site 706 show no reversals but appear to give a reliable reversed polarity primary direction, judged on the basis of the demagnetization behavior of individual samples as well as from the results of a fold test formulated by comparing the two holes drilled at this site. Magnetic polarity stratigraphy in sediments from Site 709 can be deduced in two limited sections of Pliocene-Pleistocene and Oligocene-Miocene age. Sediments recovered at Site 710 (and, to a lesser extent, Site 711) render a relatively continuous magnetic polarity stratigraphy that spans most of the Neogene and adds significantly to the body of data available to address problems in Miocene geochronology. In addition to these magnetostratigraphic results, the paleomagnetism of these sediments can be used to determine paleolatitude. Using the most reliable inclination measurements from Sites 706, 710, and 711, we compared paleomagnetic estimates of paleolatitude with estimates derived from a hotspot-based absolute plate motion model. Our data, which covers the interval since 33 Ma, shows that paleolatitudes calculated with the geocentric axial dipole assumption are in general accord with the hotspot predictions. However, a correction for the long-term nondipole field brings the paleomagnetic results into even better agreement with plate motions that are based on the fixity of African hotspots.
Resumo:
The Integrated Ocean Drilling Program Expedition 318 to the Wilkes Land margin of Antarctica recovered a sedimentary succession ranging in age from lower Eocene to the Holocene. Excellent stratigraphic control is key to understanding the timing of paleoceanographic events through critical climate intervals. Drill sites recovered the lower and middle Eocene, nearly the entire Oligocene, the Miocene from about 17 Ma, the entire Pliocene and much of the Pleistocene. The paleomagnetic properties are generally suitable for magnetostratigraphic interpretation, with well-behaved demagnetization diagrams, uniform distribution of declinations, and a clear separation into two inclination modes. Although the sequences were discontinuously recovered with many gaps due to coring, and there are hiatuses from sedimentary and tectonic processes, the magnetostratigraphic patterns are in general readily interpretable. Our interpretations are integrated with the diatom, radiolarian, calcareous nannofossils and dinoflagellate cyst (dinocyst) biostratigraphy. The magnetostratigraphy significantly improves the resolution of the chronostratigraphy, particularly in intervals with poor biostratigraphic control. However, Southern Ocean records with reliable magnetostratigraphies are notably scarce, and the data reported here provide an opportunity for improved calibration of the biostratigraphic records. In particular, we provide a rare magnetostratigraphic calibration for dinocyst biostratigraphy in the Paleogene and a substantially improved diatom calibration for the Pliocene. This paper presents the stratigraphic framework for future paleoceanographic proxy records which are being developed for the Wilkes Land margin cores. It further provides tight constraints on the duration of regional hiatuses inferred from seismic surveys of the region.