941 resultados para three-state switching cell (3SSC)
Resumo:
This thesis presents quantitative studies of T cell and dendritic cell (DC) behaviour in mouse lymph nodes (LNs) in the naive state and following immunisation. These processes are of importance and interest in basic immunology, and better understanding could improve both diagnostic capacity and therapeutic manipulations, potentially helping in producing more effective vaccines or developing treatments for autoimmune diseases. The problem is also interesting conceptually as it is relevant to other fields where 3D movement of objects is tracked with a discrete scanning interval. A general immunology introduction is presented in chapter 1. In chapter 2, I apply quantitative methods to multi-photon imaging data to measure how T cells and DCs are spatially arranged in LNs. This has been previously studied to describe differences between the naive and immunised state and as an indicator of the magnitude of the immune response in LNs, but previous analyses have been generally descriptive. The quantitative analysis shows that some of the previous conclusions may have been premature. In chapter 3, I use Bayesian state-space models to test some hypotheses about the mode of T cell search for DCs. A two-state mode of movement where T cells can be classified as either interacting to a DC or freely migrating is supported over a model where T cells would home in on DCs at distance through for example the action of chemokines. In chapter 4, I study whether T cell migration is linked to the geometric structure of the fibroblast reticular network (FRC). I find support for the hypothesis that the movement is constrained to the fibroblast reticular cell (FRC) network over an alternative 'random walk with persistence time' model where cells would move randomly, with a short-term persistence driven by a hypothetical T cell intrinsic 'clock'. I also present unexpected results on the FRC network geometry. Finally, a quantitative method is presented for addressing some measurement biases inherent to multi-photon imaging. In all three chapters, novel findings are made, and the methods developed have the potential for further use to address important problems in the field. In chapter 5, I present a summary and synthesis of results from chapters 3-4 and a more speculative discussion of these results and potential future directions.
Resumo:
Cellular behavior is dependent on a variety of extracellular cues required for normal tissue function, wound healing, and activation of the immune system. Removed from their in vivo microenvironment and cultured in vitro, cells lose many environmental cues and that may result in abberant behavior, making it difficult to study cellular processes. In order to mimic native tissue environments, optical tweezer and microfluidic technologies were used to place cells within defined areas of the culture environment. To provide three dimensional supports found in natural tissues, hydrogel scaffolds of poly (ethylene glycol) diacrylate and the basement membrane matrix Matrigel were used. Optical tweezer technology allowed precision placement and formation of homotypic and heterotypic arrays of human U937, HEK 293, and porcine mesenchymal stem cells. Alternatively, two microfluidic devices were designed to pattern Matrigel scaffolds. The first microfluidic device utilized laminar flow to spatially pattern multiple cell types within the device. Gradients of soluble molecules were then be formed and manipulated across the Matrigel scaffolds. Patterning Matrigel using laminar flow techniques require microfluidic expertise and do not produce consistent patterning conditions, limiting their use difficult in most cell culture laboratories. Thus, a buried Matrigel polydimethylsiloxane (PDMS) device was developed for spatial patterning of biological scaffolds. Matrigel is injected into micron sized channels of PDMS fabricated by soft lithography and allowed to thermally cure. Following curing, a second PDMS device was placed on top of the buried Matrigel channels to support media flow. In order to validate these systems, a cell-cell communication model system was developed utilizing LPS and TNFα signaling with fluorescent reporter systems to monitor communication in real time. We demonstrated the utility of microfluidic devices to support the cell-cell communication model system by co culturing three cell types within Matrigel scaffolds and monitoring signaling activity via fluorescent reporters.
Resumo:
Open-cell metal foams show promise as an emerging novel material for heat exchanger applications. The high surface-area-to-volume ratio suggests increased compactness and decrease in weight of heat exchanger designs. However, the metal foam structure appears conducive to condensate retention, which would degenerate heat transfer performance. This research investigates the condensate retention behavior of aluminum open-cell metal foams through the use of static dip tests and geometrical classification via X-ray Micro-Computed Tomography. Aluminum open-cell metal foam samples of 5, 10, 20, and 40 pores per inch (PPI), all having a void fraction greater than 90%, were included in this investigation. In order to model the condensate retention behavior of metal foams, a clearer understanding of the geometry was required. After exploring the ideal geometries presented in the open literature, X-ray Micro-Computed Tomography was employed to classify the actual geometry of the metal foam samples. The images obtained were analyzed using specialized software from which geometric information including strut length and pore shapes were extracted. The results discerned a high variability in ligament length, as well as features supporting the ideal geometry known as the Weaire-Phelan unit cell. The static dip tests consisted of submerging the metal foam samples in a liquid, then allowing gravity-induced drainage until steady-state was reached and the liquid remaining in the metal foam sample was measured. Three different liquids, water, ethylene glycol, and 91% isopropyl alcohol, were employed. The behaviors of untreated samples were compared to samples subjected to a Beomite surface treatment process, and no significant differences in retention behavior were discovered. The dip test results revealed two distinct regions of condensate retention, each holding approximately half of the total liquid retained by the sample. As expected, condensate retention increased as the pores sizes decreased. A model based on surface tension was developed to predict the condensate retention in the metal foam samples and verified using a regular mesh. Applying the model to both the ideal and actual metal foam geometries showed good agreement with the dip test results in this study.
Resumo:
Relief shown by hachures.
Resumo:
In the first half of this thesis, a new robotic instrument called a scanning impedance probe is presented that can acquire electrochemical impedance spectra in automated fashion from hundreds of thin film microelectrodes with systematically varied properties. Results from this instrument are presented for three catalyst compositions that are commonly considered for use in state-of-the-art solid oxide fuel cell cathodes. For (La0.8Sr0.2)0.95MnO3+δ (LSM), the impedance spectra are well fit by a through-the-film reaction pathway. Transport rates are extracted, and the surface activity towards oxygen reduction is found to be correlated with the number of exposed grain boundary sites, suggesting that grain boundaries are more surface-active than grains. For La0.5Sr0.5CoO3-δ (LSC), the surface activity degrades ~50x initially and then stabilizes at a comparable activity to that of previously measured Ba0.5Sr0.5Co0.8Fe0.2O3-δ films. For Sr0.06Nb0.06Bi1.87O3 (SNB), an example of a doped bismuth oxide, the activity of the metal-SNB boundary is measured.
In the second half of this thesis, SrCo0.9Nb0.1O3-δ is selected as a case study of perovskites containing Sr and Co, which are the most active oxygen reduction catalysts known. Several bulk properties are measured, and synchrotron data are presented that provide strong evidence of substantial cobalt-oxygen covalency at high temperatures. This covalent bonding may be the underlying source of the high surface activity.
Resumo:
Organismal development, homeostasis, and pathology are rooted in inherently probabilistic events. From gene expression to cellular differentiation, rates and likelihoods shape the form and function of biology. Processes ranging from growth to cancer homeostasis to reprogramming of stem cells all require transitions between distinct phenotypic states, and these occur at defined rates. Therefore, measuring the fidelity and dynamics with which such transitions occur is central to understanding natural biological phenomena and is critical for therapeutic interventions.
While these processes may produce robust population-level behaviors, decisions are made by individual cells. In certain circumstances, these minuscule computing units effectively roll dice to determine their fate. And while the 'omics' era has provided vast amounts of data on what these populations are doing en masse, the behaviors of the underlying units of these processes get washed out in averages.
Therefore, in order to understand the behavior of a sample of cells, it is critical to reveal how its underlying components, or mixture of cells in distinct states, each contribute to the overall phenotype. As such, we must first define what states exist in the population, determine what controls the stability of these states, and measure in high dimensionality the dynamics with which these cells transition between states.
To address a specific example of this general problem, we investigate the heterogeneity and dynamics of mouse embryonic stem cells (mESCs). While a number of reports have identified particular genes in ES cells that switch between 'high' and 'low' metastable expression states in culture, it remains unclear how levels of many of these regulators combine to form states in transcriptional space. Using a method called single molecule mRNA fluorescent in situ hybridization (smFISH), we quantitatively measure and fit distributions of core pluripotency regulators in single cells, identifying a wide range of variabilities between genes, but each explained by a simple model of bursty transcription. From this data, we also observed that strongly bimodal genes appear to be co-expressed, effectively limiting the occupancy of transcriptional space to two primary states across genes studied here. However, these states also appear punctuated by the conditional expression of the most highly variable genes, potentially defining smaller substates of pluripotency.
Having defined the transcriptional states, we next asked what might control their stability or persistence. Surprisingly, we found that DNA methylation, a mark normally associated with irreversible developmental progression, was itself differentially regulated between these two primary states. Furthermore, both acute or chronic inhibition of DNA methyltransferase activity led to reduced heterogeneity among the population, suggesting that metastability can be modulated by this strong epigenetic mark.
Finally, because understanding the dynamics of state transitions is fundamental to a variety of biological problems, we sought to develop a high-throughput method for the identification of cellular trajectories without the need for cell-line engineering. We achieved this by combining cell-lineage information gathered from time-lapse microscopy with endpoint smFISH for measurements of final expression states. Applying a simple mathematical framework to these lineage-tree associated expression states enables the inference of dynamic transitions. We apply our novel approach in order to infer temporal sequences of events, quantitative switching rates, and network topology among a set of ESC states.
Taken together, we identify distinct expression states in ES cells, gain fundamental insight into how a strong epigenetic modifier enforces the stability of these states, and develop and apply a new method for the identification of cellular trajectories using scalable in situ readouts of cellular state.
Resumo:
This dissertation presents a comparative study of three factories in Cork Harbour area, Sunbeam Wolsey (1927-90), Irish Steel (1939-2001) and the Ford Marina Plant (1917-84). All three factories were significant industrial employers in both a domestic (Irish) and a local (Cork) context and are broadly representative of the Irish manufacturing industry that was developed under the policies of tariff protection introduced in the 1930s and gradually phased out between the late 1950s and the mid-1980s. Sunbeam Wolsey was a textile and clothing concern located on the north side of Cork City that possessed a borderline monopoly within its economic sector and was among the largest private employers of female labour in twentieth century Ireland. Irish Steel was the country’s only steel mill, located on Haulbowline island, a brief ferry-ride from the seaside town of Cobh, and was unusual in being one of the few manufacturing concerns operated as a nationalised industry under the auspices of the state. The Ford Marina plant predated the introduction of protectionism by more than a decade and began as the centre of the Ford empire’s tractor manufacturing business, before switching to the production of private motor vehicles for the Irish market in 1932. All three industries were closed or sold off when the state withdrew support, either in the form of tariff protection (Ford, Sunbeam) or direct funding (Irish Steel). While devoting much attention to the three firms, the central concern of this dissertation is not the companies themselves (though the economic history portion of the dissertation is substantial), but the workers they employed, examining the lives of these individuals both as members of the Irish working class, and, more specifically, as employees of the three factories under consideration. The project can be best described as a comparative factory study, comparing and contrasting the three workforces, focusing primarily on industrial relation and the experience of work. This dissertation utilises both documentary evidence and a significant quantity of oral testimony, breaking new ground by making the workplace the central focus of its investigation. The principal aims of the study are: 1. To document the lives of those who worked in these factories, capturing through oral testimony their subjective experiences of social class and factory life, as well as differences among narrators in terms of gender and status. In achieving this aim, the study will provide a broader social context for its detailed analysis of work and industrial relations in each firm. 2. To analyse the three workplaces and determine how and why each developed such distinct systems of industrial relations at the factory level, as well as to compare and contrast these systems. 3. To examine the nature of work in each factory and to determine how work and industrial relations in each firm developed over time, relating these changes both to internal and external factors. Additionally, the project will provide a comparative analysis of these changes.
Resumo:
This paper aimed to study and compare the hematology of newborns, young, subadults, adult males, adult females and pregnant females of Potamotrygon wallacei (cururu stingray), Potamotrygon motoro and Paratrygon aiereba. Newborn cururu stingrays had lower red blood parameters than those of other development stages. Thrombograms and leukograms showed a conservative pattern between development stage, sexual dimorphism and pregnancy. In P. motoro and P. aiereba, variables relating to red blood parameters, biochemistry and leukograms showed little variation between the species' biological characteristics, thus showing that these variables are not good criteria for differentiating them within the same species. In conclusion, the development stage is an important factor for differentiating hematological properties in the cururu stingray, while this has not been observed in P. motoro and P. aiereba stingrays.
Resumo:
This research work analyses techniques for implementing a cell-centred finite-volume time-domain (ccFV-TD) computational methodology for the purpose of studying microwave heating. Various state-of-the-art spatial and temporal discretisation methods employed to solve Maxwell's equations on multidimensional structured grid networks are investigated, and the dispersive and dissipative errors inherent in those techniques examined. Both staggered and unstaggered grid approaches are considered. Upwind schemes using a Riemann solver and intensity vector splitting are studied and evaluated. Staggered and unstaggered Leapfrog and Runge-Kutta time integration methods are analysed in terms of phase and amplitude error to identify which method is the most accurate and efficient for simulating microwave heating processes. The implementation and migration of typical electromagnetic boundary conditions. from staggered in space to cell-centred approaches also is deliberated. In particular, an existing perfectly matched layer absorbing boundary methodology is adapted to formulate a new cell-centred boundary implementation for the ccFV-TD solvers. Finally for microwave heating purposes, a comparison of analytical and numerical results for standard case studies in rectangular waveguides allows the accuracy of the developed methods to be assessed.
Resumo:
Chronic wounds are a significant socioeconomic problem for governments worldwide. Approximately 15% of people who suffer from diabetes will experience a lower-limb ulcer at some stage of their lives, and 24% of these wounds will ultimately result in amputation of the lower limb. Hyperbaric Oxygen Therapy (HBOT) has been shown to aid the healing of chronic wounds; however, the causal reasons for the improved healing remain unclear and hence current HBOT protocols remain empirical. Here we develop a three-species mathematical model of wound healing that is used to simulate the application of hyperbaric oxygen therapy in the treatment of wounds. Based on our modelling, we predict that intermittent HBOT will assist chronic wound healing while normobaric oxygen is ineffective in treating such wounds. Furthermore, treatment should continue until healing is complete, and HBOT will not stimulate healing under all circumstances, leading us to conclude that finding the right protocol for an individual patient is crucial if HBOT is to be effective. We provide constraints that depend on the model parameters for the range of HBOT protocols that will stimulate healing. More specifically, we predict that patients with a poor arterial supply of oxygen, high consumption of oxygen by the wound tissue, chronically hypoxic wounds, and/or a dysfunctional endothelial cell response to oxygen are at risk of nonresponsiveness to HBOT. The work of this paper can, in some way, highlight which patients are most likely to respond well to HBOT (for example, those with a good arterial supply), and thus has the potential to assist in improving both the success rate and hence the costeffectiveness of this therapy.
Resumo:
Paramedics are at high risk of exposure to infectious diseases because they frequently undertake procedures such as the use and disposal of sharps as components of everyday practice. While the literature demonstrates that the management of sharps is problematic across all health disciplines, there is a paucity of research examining sharps management practices in the Australian pre-hospital paramedic context. This study examines knowledge and practices of sharps control among paramedics in Queensland, Australia. A mail survey focusing on infection control knowledge and practices was sent to all clinical personnel of the Queensland Ambulance Service (QAS) (N = 2274). A total of 1258 surveys were returned, a response rate of 55.3%. Participants responded to 12 true/false statements on the management of sharps and three questions about recapping practices. Most respondents were knowledgeable about the correct management of sharps, with a mean of 11.28 (out of 12, SD = 1.32). When gauging reported practices, more than half (59.1%, n = 736) of participants reported recapping a needle, and 38.5% (n = 479) reported never having done so. These results reflect good knowledge of general management of sharps among respondents, but suggest deficits regarding reported practices. The results suggest that a comprehensive ambulance in-service education programme focusing particularly on sharps management is required. The study highlights the need for further research on sharps management practices in the field, identification of barriers to safe sharps practices in pre-hospital settings, and 'best practice' for translating good sharps management knowledge into practice.
Resumo:
Human embryonic stem cell research promises to deliver in the future a whole range of therapeutic treatments, but currently governments in different jurisdictions must try to regulate this burgeoning area. Part of the problem has been, and continues to be, polarised community opinion on the use of human embryonic stem cells for research. This article compares the approaches of the Australian, United Kingdom and United States governments in regulating human embryonic stem cell research. To date, these governments have approached the issue through implementing legislation or policy to control research. Similarly, the three jurisdictions have viewed the patentability of human embryonic stem cell technologies in their own ways with different policies being adopted by the three patent offices. This article examines these different approaches and discusses the inevitable concerns that have been raised due to the lack of a universal approach in relation to the regulation of research; the patenting of stem cell technologies; and the effects patents granted are having on further human embryonic stem cell research.
Resumo:
Biological tissues are subjected to complex loading states in vivo and in order to define constitutive equations that effectively simulate their mechanical behaviour under these loads, it is necessary to obtain data on the tissue's response to multiaxial loading. Single axis and shear testing of biological tissues is often carried out, but biaxial testing is less common. We sought to design and commission a biaxial compression testing device, capable of obtaining repeatable data for biological samples. The apparatus comprised a sealed stainless steel pressure vessel specifically designed such that a state of hydrostatic compression could be created on the test specimen while simultaneously unloading the sample along one axis with an equilibrating tensile pressure. Thus a state of equibiaxial compression was created perpendicular to the long axis of a rectangular sample. For the purpose of calibration and commissioning of the vessel, rectangular samples of closed cell ethylene vinyl acetate (EVA) foam were tested. Each sample was subjected to repeated loading, and nine separate biaxial experiments were carried out to a maximum pressure of 204 kPa (30 psi), with a relaxation time of two hours between them. Calibration testing demonstrated the force applied to the samples had a maximum error of 0.026 N (0.423% of maximum applied force). Under repeated loading, the foam sample demonstrated lower stiffness during the first load cycle. Following this cycle, an increased stiffness, repeatable response was observed with successive loading. While the experimental protocol was developed for EVA foam, preliminary results on this material suggest that this device may be capable of providing test data for biological tissue samples. The load response of the foam was characteristic of closed cell foams, with consolidation during the early loading cycles, then a repeatable load-displacement response upon repeated loading. The repeatability of the test results demonstrated the ability of the test device to provide reproducible test data and the low experimental error in the force demonstrated the reliability of the test data.
Resumo:
Off-site manufacture (OSM) offers numerous benefits to all parties in the construction process. The uptake of OSM in Australia has, however, been limited. This limited uptake corresponds to similar trends in the UK and US, although the level of OSM there appears to be increasing. This project undertook three workshops — one each in Victoria, Queensland and Western Australia — and 18 interviews with key stakeholders to assist in identifying the general benefits and barriers to OSM uptake in the Australian construction industry. Seven case studies were also undertaken, involving construction projects that used OSM, ranging from civil projects through to residential. Each of these case studies has been analysed to identify what worked and what didn’t, and suggest the lessons to be learned from each project.
Resumo:
In this paper, a fixed-switching-frequency closed-loop modulation of a voltage-source inverter (VSI), upon the digital implementation of the modulation process, is analyzed and characterized. The sampling frequency of the digital processor is considered as an integer multiple of the modulation switching frequency. An expression for the determination of the modulation design parameter is developed for smooth modulation at a fixed switching frequency. The variation of the sampling frequency, switching frequency, and modulation index has been analyzed for the determination of the switching condition under closed loop. It is shown that the switching condition determined based on the continuous-time analysis of the closed-loop modulation will ensure smooth modulation upon the digital implementation of the modulation process. However, the stability properties need to be tested prior to digital implementation as they get deteriorated at smaller sampling frequencies. The closed-loop modulation index needs to be considered maximum while determining the design parameters for smooth modulation. In particular, a detailed analysis has been carried out by varying the control gain in the sliding-mode control of a two-level VSI. The proposed analysis of the closed-loop modulation of the VSI has been verified for the operation of a distribution static compensator. The theoretical results are validated experimentally on both single- and three-phase systems.