963 resultados para test environments
Resumo:
Business process models have traditionally been an effective way of examining business practices to identify areas for improvement. While common information gathering approaches are generally efficacious, they can be quite time consuming and have the risk of developing inaccuracies when information is forgotten or incorrectly interpreted by analysts. In this study, the potential of a role-playing approach for process elicitation and specification has been examined. This method allows stakeholders to enter a virtual world and role-play actions as they would in reality. As actions are completed, a model is automatically developed, removing the need for stakeholders to learn and understand a modelling grammar. Empirical data obtained in this study suggests that this approach may not only improve both the number of individual process task steps remembered and the correctness of task ordering, but also provide a reduction in the time required for stakeholders to model a process view.
Resumo:
Articular cartilage is a highly organized tissue with cellular and matrix properties that vary with depth zones. Regenerating this zonal organization has proven difficult in tissue-engineered cartilage to treat damaged cartilage. In this thesis, we evaluated the effects of culture environments that mimic aspects of the native cartilage environment on chondrocyte subpopulations. We found that decellularized cartilage matrix can improve zonal tissue-engineered cartilage. Also, chondrocytes respond to signals from bone cells and compressive stimulation in a zone-dependent manner. These results highlight the importance of a zone-specific environment to improve tissue-engineered cartilage in vitro.
Resumo:
Elevated levels of fungi in indoor environments have been linked with mould/moisture damage in building structures. However, there is a lack of information about “normal” concentrations and flora as well as guidelines of viable fungi in the school environment in different climatic conditions. We have reviewed existing guidelines for indoor fungi and the current knowledge of the concentrations and flora of viable fungi in different climatic areas, the impact of the local factors on concentrations and flora of viable fungi in school environments. Meta-regression was performed to estimate the average behaviour for each analysis of interest, showing wide variation in the mean concentrations in outdoor and indoor school environments (range: 101-103 cfu/m3). These concentrations were significantly higher for both outdoors and indoors in the moderate than in the continental climatic area, showing that the climatic condition was a determinant for the concentrations of airborne viable fungi. The most common fungal species both in the moderate and continental area were Cladosporium spp. and Penicillium spp. The suggested few quantitative guidelines for indoor air viable fungi for school buildings are much lower than for residential areas. This review provides a synthesis, which can be used to guide the interpretation of the fungi measurements results and help to find indications of mould/moisture in school building structures.
Resumo:
We describe our experiences with automating a large fork-lift type vehicle that operates outdoors and in all weather. In particular, we focus on the use of independent and robust localisation systems for reliable navigation around the worksite. Two localisation systems are briefly described. The first is based on laser range finders and retro-reflective beacons, and the second uses a two camera vision system to estimate the vehicle’s pose relative to a known model of the surrounding buildings. We show the results from an experiment where the 20 tonne experimental vehicle, an autonomous Hot Metal Carrier, was conducting autonomous operations and one of the localisation systems was deliberately made to fail.
Resumo:
Background Explosive ordnance disposal (EOD) technicians are often required to wear specialised clothing combinations that not only protect against the risk of explosion but also potential chemical contamination. This heavy (>35kg) and encapsulating ensemble is likely to increase physiological strain by increasing metabolic heat production and impairing heat dissipation. This study investigated the physiological tolerance times of two different chemical protective undergarments, commonly worn with EOD personal protective clothing, in a range of simulated environmental extremes and work intensities Methods Seven males performed eighteen trials wearing two ensembles. The trials involved walking on a treadmill at 2.5, 4 and 5.5 km.h-1 at each of the following environmental conditions, 21, 30 and 37°C wet bulb globe temperature (WBGT). The trials were ceased if the participants’ core temperature reached 39°C, if heart rate exceeded 90% of maximum, if walking time reached 60 minutes or due to volitional fatigue. Results Physiological tolerance times ranged from 8 to 60 min and the duration (mean difference: 2.78 min, P>0.05) were similar in both ensembles. A significant effect for environment (21>30>37°C WBGT, P<0.05) and work intensity (2.5>4>5.5 km.h-1, P< 0.05) was observed in tolerance time. The majority of trials across both ensembles (101/126; 80.1%) were terminated due to participants achieving a heart rate equivalent to greater than 90% of their maximum. Conclusions Physiological tolerance times wearing these two chemical protective undergarments, worn underneath EOD personal protective clothing, were similar and predominantly limited by cardiovascular strain.
Resumo:
There is considerable scientific interest in personal exposure to ultrafine particles. Owing to their small size, these particles are able to penetrate deep into the lungs, where they may cause adverse respiratory, pulmonary and cardiovascular health effects. This article presents Bayesian hierarchical models for estimating and comparing inhaled particle surface area in the lung.
Resumo:
This paper presents an enhanced algorithm for matching laser scan maps using histogram correlations. The histogram representation effectively summarizes a map's salient features such that pairs of maps can be matched efficiently without any prior guess as to their alignment. The histogram matching algorithm has been enhanced in order to work well in outdoor unstructured environments by using entropy metrics, weighted histograms and proper thresholding of quality metrics. Thus our large-scale scan-matching SLAM implementation has a vastly improved ability to close large loops in real-time even when odometry is not available. Our experimental results have demonstrated a successful mapping of the largest area ever mapped to date using only a single laser scanner. We also demonstrate our ability to solve the lost robot problem by localizing a robot to a previously built map without any prior initialization.
Resumo:
Automotive interactive technologies represent an exemplar challenge for user experience (UX) designers, as the concerns for aesthetics, functionality and usability add up to the compelling issues of safety and cognitive demand. This extended abstract presents a methodology for the user-centred creation and evaluation of novel in-car applications, involving real users in realistic use settings. As a case study, we present the methodologies of an ideation workshop in a simulated environment and the evaluation of six design idea prototypes for in-vehicle head up display (HUD) applications using a semi-naturalistic drive. Both methods rely on video recordings of real traffic situations that the users are familiar with and/or experienced themselves. The extended abstract presents experiences and results from the evaluation and reflection on our methods.
Resumo:
Objective Explosive ordnance disposal (EOD) often requires technicians to wear multiple protective garments in challenging environmental conditions. The accumulative effect of increased metabolic cost coupled with decreased heat dissipation associated with these garments predisposes technicians to high levels of physiological strain. It has been proposed that a perceptual strain index (PeSI) using subjective ratings of thermal sensation and perceived exertion as surrogate measures of core body temperature and heart rate, may provide an accurate estimation of physiological strain. Therefore, this study aimed to determine if the PeSI could estimate the physiological strain index (PSI) across a range of metabolic workloads and environments while wearing heavy EOD and chemical protective clothing. Methods Eleven healthy males wore an EOD and chemical protective ensemble while walking on a treadmill at 2.5, 4 and 5.5 km·h− 1 at 1% grade in environmental conditions equivalent to wet bulb globe temperature (WBGT) 21, 30 and 37 °C. WBGT conditions were randomly presented and a maximum of three randomised treadmill walking trials were completed in a single testing day. Trials were ceased at a maximum of 60-min or until the attainment of termination criteria. A Pearson's correlation coefficient, mixed linear model, absolute agreement and receiver operating characteristic (ROC) curves were used to determine the relationship between the PeSI and PSI. Results A significant moderate relationship between the PeSI and the PSI was observed [r = 0.77; p < 0.001; mean difference = 0.8 ± 1.1 a.u. (modified 95% limits of agreement − 1.3 to 3.0)]. The ROC curves indicated that the PeSI had a good predictive power when used with two, single-threshold cut-offs to differentiate between low and high levels of physiological strain (area under curve: PSI three cut-off = 0.936 and seven cut-off = 0.841). Conclusions These findings support the use of the PeSI for monitoring physiological strain while wearing EOD and chemical protective clothing. However, future research is needed to confirm the validity of the PeSI for active EOD technicians operating in the field.
Resumo:
Many researchers in the field of civil structural health monitoring (SHM) have developed and tested their methods on simple to moderately complex laboratory structures such as beams, plates, frames, and trusses. Fieldwork has also been conducted by many researchers and practitioners on more complex operating bridges. Most laboratory structures do not adequately replicate the complexity of truss bridges. Informed by a brief review of the literature, this paper documents the design and proposed test plan of a structurally complex laboratory bridge model that has been specifically designed for the purpose of SHM research. Preliminary results have been presented in the companion paper.
Resumo:
Many complex aeronautical design problems can be formulated with efficient multi-objective evolutionary optimization methods and game strategies. This book describes the role of advanced innovative evolution tools in the solution, or the set of solutions of single or multi disciplinary optimization. These tools use the concept of multi-population, asynchronous parallelization and hierarchical topology which allows different models including precise, intermediate and approximate models with each node belonging to the different hierarchical layer handled by a different Evolutionary Algorithm. The efficiency of evolutionary algorithms for both single and multi-objective optimization problems are significantly improved by the coupling of EAs with games and in particular by a new dynamic methodology named “Hybridized Nash-Pareto games”. Multi objective Optimization techniques and robust design problems taking into account uncertainties are introduced and explained in detail. Several applications dealing with civil aircraft and UAV, UCAV systems are implemented numerically and discussed. Applications of increasing optimization complexity are presented as well as two hands-on test cases problems. These examples focus on aeronautical applications and will be useful to the practitioner in the laboratory or in industrial design environments. The evolutionary methods coupled with games presented in this volume can be applied to other areas including surface and marine transport, structures, biomedical engineering, renewable energy and environmental problems.
Resumo:
This paper compares different state-of-the-art exploration strategies for teams of mobile robots exploring an unknown environment. The goal is to help in determining a best strategy for a given multi-robot scenario and optimization target. Experiments are done in a 2D-simulation environment with 5 robots that are equipped with a horizontal laser range finder. Required components like SLAM, path planning and obstacle avoidance of every robot are included in a full-system simulation. To evaluate different strategies the time to finish exploration, the number of measurements that have been integrated into the map and the development in size of the explored area over time are used. The results of extensive test runs on three environments with different characteristics show that simple strategies can perform fairly well in many situations but specialized strategies can improve performance with regards to their targeted evaluation measure.
Resumo:
Background Understanding the organisational predictors of burnout (emotional exhaustion) in haemodialysis nurses is critical for staff retention and improving nurse and patient outcomes. Previous research has demonstrated high levels of emotional exhaustion among haemodialysis nurses; yet the relationships among nurses’ work environment, job satisfaction, stress and emotional exhaustion are poorly understood. Aim To test an explanatory model of the relationships among the nursing work environment, job satisfaction, job stress and emotional exhaustion for haemodialysis nurses, drawing on Kanter’s Structural Theory of Organisational Empowerment. Methods Using a cross-sectional design 417 haemodialysis nurses completed an online survey between October 2011 and April 2012 using validated instruments to measure the work environment, and levels of job satisfaction, job stress and emotional exhaustion. Results Overall, the explanatory model demonstrated adequate fit and we found partial support for the hypothesised relationships. Haemodialysis nurses’ work environment had a direct positive effect on job satisfaction, explaining 88% of the variance. Greater job satisfaction, in turn, predicted lower job stress, explaining 82% of the variance. Job satisfaction also had an indirect effect on emotional exhaustion by mitigating job stress. However, job satisfaction did not have a direct effect on emotional exhaustion. Conclusion The work environment of haemodialysis nurses is pivotal to the development of job satisfaction. Nurses’ job satisfaction also affects the levels of job stress and emotional exhaustion. Our findings suggest nurse managers can improve staff retention by creating empowering work environments that promote job satisfaction in haemodialysis nurses.
Resumo:
Background The capacity to diagnosys, quantify and evaluate movement beyond the general confines of a clinical environment under effectiveness conditions may alleviate rampant strain on limited, expensive and highly specialized medical resources. An iPhone 4® mounted a three dimensional accelerometer subsystem with highly robust software applications. The present study aimed to evaluate the reliability and concurrent criterion-related validity of the accelerations with an iPhone 4® in an Extended Timed Get Up and Go test. Extended Timed Get Up and Go is a clinical test with that the patient get up from the chair and walking ten meters, turn and coming back to the chair. Methods A repeated measure, cross-sectional, analytical study. Test-retest reliability of the kinematic measurements of the iPhone 4® compared with a standard validated laboratory device. We calculated the Coefficient of Multiple Correlation between the two sensors acceleration signal of each subject, in each sub-stage, in each of the three Extended Timed Get Up and Go test trials. To investigate statistical agreement between the two sensors we used the Bland-Altman method. Results With respect to the analysis of the correlation data in the present work, the Coefficient of Multiple Correlation of the five subjects in their triplicated trials were as follows: in sub-phase Sit to Stand the ranged between r = 0.991 to 0.842; in Gait Go, r = 0.967 to 0.852; in Turn, 0.979 to 0.798; in Gait Come, 0.964 to 0.887; and in Turn to Stand to Sit, 0.992 to 0.877. All the correlations between the sensors were significant (p < 0.001). The Bland-Altman plots obtained showed a solid tendency to stay at close to zero, especially on the y and x-axes, during the five phases of the Extended Timed Get Up and Go test. Conclusions The inertial sensor mounted in the iPhone 4® is sufficiently reliable and accurate to evaluate and identify the kinematic patterns in an Extended Timed Get and Go test. While analysis and interpretation of 3D kinematics data continue to be dauntingly complex, the iPhone 4® makes the task of acquiring the data relatively inexpensive and easy to use.
Resumo:
Robustness to variations in environmental conditions and camera viewpoint is essential for long-term place recognition, navigation and SLAM. Existing systems typically solve either of these problems, but invariance to both remains a challenge. This paper presents a training-free approach to lateral viewpoint- and condition-invariant, vision-based place recognition. Our successive frame patch-tracking technique infers average scene depth along traverses and automatically rescales views of the same place at different depths to increase their similarity. We combine our system with the condition-invariant SMART algorithm and demonstrate place recognition between day and night, across entire 4-lane-plus-median-strip roads, where current algorithms fail.