801 resultados para sustainable urban design
Resumo:
The solar and longwave environmental irradiance geometry (SOLWEIG) model simulates spatial variations of 3-D radiation fluxes and mean radiant temperature (T mrt) as well as shadow patterns in complex urban settings. In this paper, a new vegetation scheme is included in SOLWEIG and evaluated. The new shadow casting algorithm for complex vegetation structures makes it possible to obtain continuous images of shadow patterns and sky view factors taking both buildings and vegetation into account. For the calculation of 3-D radiation fluxes and T mrt, SOLWEIG only requires a limited number of inputs, such as global shortwave radiation, air temperature, relative humidity, geographical information (latitude, longitude and elevation) and urban geometry represented by high-resolution ground and building digital elevation models (DEM). Trees and bushes are represented by separate DEMs. The model is evaluated using 5 days of integral radiation measurements at two sites within a square surrounded by low-rise buildings and vegetation in Göteborg, Sweden (57°N). There is good agreement between modelled and observed values of T mrt, with an overall correspondence of R 2 = 0.91 (p < 0.01, RMSE = 3.1 K). A small overestimation of T mrt is found at locations shadowed by vegetation. Given this good performance a number of suggestions for future development are identified for applications which include for human comfort, building design, planning and evaluation of instrument exposure.
Resumo:
That construction procurement needs to be re-organized to make it more sustainable implies that there is a problem with the current situation. Starting from this assumption, an overview of construction procurement sets the scene for a discussion of some recent developments relating to organizational frameworks for sustainable construction procurement. Emergent theories dealing with sustainable procurement are considered. There is a plethora of standards and guidance documents for organizing sustainable procurement, originating from a variety of organizations involved. These considerations form the context for approaches being used in practice to achieve sustainable procurement. The Chapter concludes with reflections on why current approaches are insufficient. It seems difficult to persuade clients to spend less money over the life cycle of their buildings. Future directions needed to translate sustainable procurement from rhetoric to reality include the development of suitable incentives and appropriate organizational structures.
Resumo:
This paper explores the mapping of the environmental assessment process onto design and construction processes. A comparative case study method is used to identify and account for variations in the ‘fit’ between these two processes. The analysis compares eight BREEAM projects (although relevant to LEED, GreenStar, etc.) and distinguishes project-level characteristics and dynamics. Drawing on insights from literature on sustainable construction and assessment methods, an analytic framework is developed to examine the effect of clusters of project and assessment level elements on different types of fit (tight, punctual and bolt-on). Key elements distinguishing between types include: prior working experience with project team members, individual commitment to sustainable construction, experience with sustainable construction, project continuity, project-level ownership of the assessment process, and the nature and continuity of assessor involvement. Professionals with ‘sustainable’ experience used BREEAM judiciously to support their designs (along with other frameworks), but less committed professionals tended to treat it purely as an assessment method. More attention needs to be paid to individual levels of engagement with, and understanding of, sustainability in general (rather than knowledge of technical solutions to individual credits), to ownership of the assessment process and to the potential effect of discontinuities at the project level on sustainable design.
Resumo:
On-going human population growth and changing patterns of resource consumption are increasing global demand for ecosystem services, many of which are provided by soils. Some of these ecosystem services are linearly related to the surface area of pervious soil, whereas others show non-linear relationships, making ecosystem service optimization a complex task. As limited land availability creates conflicting demands among various types of land use, a central challenge is how to weigh these conflicting interests and how to achieve the best solutions possible from a perspective of sustainable societal development. These conflicting interests become most apparent in soils that are the most heavily used by humans for specific purposes: urban soils used for green spaces, housing, and other infrastructure and agricultural soils for producing food, fibres and biofuels. We argue that, despite their seemingly divergent uses of land, agricultural and urban soils share common features with regards to interactions between ecosystem services, and that the trade-offs associated with decision-making, while scale- and context-dependent, can be surprisingly similar between the two systems. We propose that the trade-offs within land use types and their soil-related ecosystems services are often disproportional, and quantifying these will enable ecologists and soil scientists to help policy makers optimizing management decisions when confronted with demands for multiple services under limited land availability.
Resumo:
he first international urban land surface model comparison was designed to identify three aspects of the urban surface-atmosphere interactions: (1) the dominant physical processes, (2) the level of complexity required to model these, and 3) the parameter requirements for such a model. Offline simulations from 32 land surface schemes, with varying complexity, contributed to the comparison. Model results were analysed within a framework of physical classifications and over four stages. The results show that the following are important urban processes; (i) multiple reflections of shortwave radiation within street canyons, (ii) reduction in the amount of visible sky from within the canyon, which impacts on the net long-wave radiation, iii) the contrast in surface temperatures between building roofs and street canyons, and (iv) evaporation from vegetation. Models that use an appropriate bulk albedo based on multiple solar reflections, represent building roof surfaces separately from street canyons and include a representation of vegetation demonstrate more skill, but require parameter information on the albedo, height of the buildings relative to the width of the streets (height to width ratio), the fraction of building roofs compared to street canyons from a plan view (plan area fraction) and the fraction of the surface that is vegetated. These results, whilst based on a single site and less than 18 months of data, have implications for the future design of urban land surface models, the data that need to be measured in urban observational campaigns, and what needs to be included in initiatives for regional and global parameter databases.
Resumo:
A universal systems design process is specified, tested in a case study and evaluated. It links English narratives to numbers using a categorical language framework with mathematical mappings taking the place of conjunctions and numbers. The framework is a ring of English narrative words between 1 (option) and 360 (capital); beyond 360 the ring cycles again to 1. English narratives are shown to correspond to the field of fractional numbers. The process can enable the development, presentation and communication of complex narrative policy information among communities of any scale, on a software implementation known as the "ecoputer". The information is more accessible and comprehensive than that in conventional decision support, because: (1) it is expressed in narrative language; and (2) the narratives are expressed as compounds of words within the framework. Hence option generation is made more effective than in conventional decision support processes including Multiple Criteria Decision Analysis, Life Cycle Assessment and Cost-Benefit Analysis.The case study is of a participatory workshop in UK bioenergy project objectives and criteria, at which attributes were elicited in environmental, economic and social systems. From the attributes, the framework was used to derive consequences at a range of levels of precision; these are compared with the project objectives and criteria as set out in the Case for Support. The design process is to be supported by a social information manipulation, storage and retrieval system for numeric and verbal narratives attached to the "ecoputer". The "ecoputer" will have an integrated verbal and numeric operating system. Novel design source code language will assist the development of narrative policy. The utility of the program, including in the transition to sustainable development and in applications at both community micro-scale and policy macro-scale, is discussed from public, stakeholder, corporate, Governmental and regulatory perspectives.
Resumo:
Chongqing is the largest central-government-controlled municipality in China, which is now under going a rapid urbanization. The question remains open: What are the consequences of such rapid urbanization in Chongqing in terms of urban microclimates? An integrated study comprising three different research approaches is adopted in the present paper. By analyzing the observed annual climate data, an average rising trend of 0.10◦C/decade was found for the annual mean temperature from 1951 to 2010 in Chongqing,indicating a higher degree of urban warming in Chongqing. In addition, two complementary types of field measurements were conducted: fixed weather stations and mobile transverse measurement. Numerical simulations using a house-developed program are able to predict the urban air temperature in Chongqing.The urban heat island intensity in Chongqing is stronger in summer compared to autumn and winter.The maximum urban heat island intensity occurs at around midnight, and can be as high as 2.5◦C. In the day time, an urban cool island exists. Local greenery has a great impact on the local thermal environment.Urban green spaces can reduce urban air temperature and therefore mitigate the urban heat island. The cooling effect of an urban river is limited in Chongqing, as both sides of the river are the most developed areas, but the relative humidity is much higher near the river compared with the places far from it.
Resumo:
This paper aims to address the characteristics of urban microclimates that affect the building energy performance and implementation of the renewable energy technologies. An experimental campaign was designed to investigate the microclimate parameters including air and surface temperature, direct and diffuse solar irradiation levels on both horizontal and vertical surfaces, wind speed and direction in a dense urban area in London. The outcomes of this research reveal that the climatic parameters are significantly influenced by the attributes of urban textures, which highlight the need for both providing the microclimatic information and using them in buildings design stages. This research provides a valuable set of microclimatic information for a dense urban area in London. According to the outcomes of this research, the feasibility study for implementation of renewable energy technologies and the thermal/ energy performance assessment of buildings need to be conducted using the microclimatic information rather than the meteorological weather data mostly collected from non-urban environments.
Resumo:
The urban heat island is a well-known phenomenon that impacts a wide variety of city operations. With greater availability of cheap meteorological sensors, it is possible to measure the spatial patterns of urban atmospheric characteristics with greater resolution. To develop robust and resilient networks, recognizing sensors may malfunction, it is important to know when measurement points are providing additional information and also the minimum number of sensors needed to provide spatial information for particular applications. Here we consider the example of temperature data, and the urban heat island, through analysis of a network of sensors in the Tokyo metropolitan area (Extended METROS). The effect of reducing observation points from an existing meteorological measurement network is considered, using random sampling and sampling with clustering. The results indicated the sampling with hierarchical clustering can yield similar temperature patterns with up to a 30% reduction in measurement sites in Tokyo. The methods presented have broader utility in evaluating the robustness and resilience of existing urban temperature networks and in how networks can be enhanced by new mobile and open data sources.
Resumo:
Understanding farmer behaviour is needed for local agricultural systems to produce food sustainably while facing multiple pressures. We synthesize existing literature to identify three fundamental questions that correspond to three distinct areas of knowledge necessary to understand farmer behaviour: 1) decision-making model; 2) cross-scale and cross-level pressures; and 3) temporal dynamics. We use this framework to compare five interdisciplinary case studies of agricultural systems in distinct geographical contexts across the globe. We find that these three areas of knowledge are important to understanding farmer behaviour, and can be used to guide the interdisciplinary design and interpretation of studies in the future. Most importantly, we find that these three areas need to be addressed simultaneously in order to understand farmer behaviour. We also identify three methodological challenges hindering this understanding: the suitability of theoretical frameworks, the trade-offs among methods and the limited timeframe of typical research projects. We propose that a triangulation research strategy that makes use of mixed methods, or collaborations between researchers across mixed disciplines, can be used to successfully address all three areas simultaneously and show how this has been achieved in the case studies. The framework facilitates interdisciplinary research on farmer behaviour by opening up spaces of structured dialogue on assumptions, research questions and methods employed in investigation.
Resumo:
It is necessary to minimize the environmental impact and utilize natural resources in a sustainable and efficient manner in the early design stage of developing an environmentally-conscious design for a heating, ventilating and air-conditioning system. Energy supply options play a significant role in the total environmental load of heating, ventilating and air-conditioning systems. To assess the environmental impact of different energy options, a new method based on Emergy Analysis is proposed. Emergy Accounting, was first developed and widely used in the area of ecological engineering, but this is the first time it has been used in building service engineering. The environmental impacts due to the energy options are divided into four categories under the Emergy Framework: the depletion of natural resources, the greenhouse effect (carbon dioxide equivalents), the chemical rain effect (sulphur dioxide equivalents), and anthropogenic heat release. The depletion of non-renewable natural resources is indicated by the Environmental Load Ratio, and the environmental carrying capacity is developed to represent the environmental service to dilute the pollutants and anthropogenic heat released. This Emergy evaluation method provides a new way to integrate different environmental impacts under the same framework and thus facilitates better system choices. A case study of six different kinds of energy options consisting of renewable and non-renewable energy was performed by using Emergy Theory, and thus their relative environmental impacts were compared. The results show that the method of electricity generation in energy sources, especially for electricity-powered systems, is the most important factor to determine their overall environmental performance. The direct-fired lithium-bromide absorption type consumes more non-renewable energy, and contributes more to the urban heat island effect compared with other options having the same electricity supply. Using Emergy Analysis, designers and clients can make better-informed, environmentally-conscious selections of heating, ventilating and air-conditioning systems.
Resumo:
Countless cities are rapidly developing across the globe, pressing the need for clear urban planning and design recommendations geared towards sustainability. This article examines the intersections of Jane Jacobs’ four conditions for diversity with low-carbon and low-energy use urban systems in four cities around the world: Lyon (France), Chicago (United-States), Kolkata (India), and Singapore (Singapore). After reviewing Jacobs’ four conditions for diversity, we introduce the four cities and describe their historical development context. We then present a framework to study the cities along three dimensions: population and density, infrastructure development/use, and climate and landscape. These cities differ in many respects and their analysis is instructive for many other cities around the globe. Jacobs’ conditions are present in all of them, manifested in different ways and to varying degrees. Overall we find that the adoption of Jacobs' conditions seems to align well with concepts of low-carbon urban systems, with their focus on walkability, transit-oriented design, and more efficient land use (i.e., smaller unit sizes). Transportation sector emissions seems to demonstrate a stronger influence from the presence of Jacobs' conditions, while the link was less pronounced in the building sector. Kolkata, a low-income, developing world city, seems to possess many of Jacobs' conditions, while exhibiting low per capita emissions - maintaining both of these during its economic expansion will take careful consideration. Greenhouse gas mitigation, however, is inherently an in situ problem and the first task must therefore be to gain local knowledge of an area before developing strategies to lower its carbon footprint.
Resumo:
Purpose – This paper aims to investigate the influence of public-private partnerships (PPPs) on social and economic conditions in Kazakhstan and Russia from a public economics perspective, namely, through the lens of a market failure and PPPs’ negative externalities. Design/methodology/approach – Drawing on the concept of a market failure and using the externalities perspective, the paper investigates whether partnerships are instrumental in solving market problems, which is illustrated by the evidence from ongoing PPP projects in Kazakhstan and Russia. Findings – Results show that citizens face expansion of monopolistic trends in the service provision and decreased availability of public services. Additionally, the government support to partnerships recreates a negative externality in the form of a higher risk premium on loan interest rates that banks use to finance PPPs. The partnerships’ impact on sustainable development often appears detrimental, as they significantly intensify the struggle between sub-national governments for increased transfers from the national budget. Practical implications – The government agencies must incorporate the appraisal of the PPP externalities and their effects on the society in the decision-making regarding the PPP formation. Originality/value – The authors suggest that, although government is interested in PPPs’ positive externalities, in reality many negative externalities may offset the positive spillover effects. As a result, the partnerships’ contributions to economic and social sustainability remain controversial. Extending the value-for-money concept to incorporate the assessment of PPP externalities might significantly enhance the partnership conceptualisation by more comprehensive and accurate assessment of PPPs’ economic and social value.
Resumo:
The urban boundary layer, above the canopy, is still poorly understood. One of the challenges is obtaining data by sampling more than a few meters above the rooftops, given the spatial and temporal inhomogeneities in both horizontal and vertical. Sodars are generally useful tools for ground-based remote sensing of winds and turbulence, but rely on horizontal homogeneity (as do lidars) in building up 3-component wind vectors from sampling three or more spatially separated volumes. The time taken for sound to travel to a typical range of 200 m and back is also a limitation. A sodar of radically different design is investigated, aimed at addressing these problems. It has a single vertical transmitted sound pulse. Doppler shifted signals are received from a number of volumes around the periphery of the transmitted beam with microphones which each having tight angular sensitivity at zenith angles slightly off-vertical. The spatial spread of sampled volumes is therefore smaller. By having more receiver microphones than a conventional sodar, the effect of smaller zenith angle is offset. More rapid profiling is also possible with a single vertical transmitted beam, instead of the usual multiple beams.A prototype design is described, together with initial field measurements. It is found that the beam forming using a single dish antenna and the drift of the sound pulse downwind both give rise to reduced performance compared with expectations. It is concluded that, while the new sodar works in principle, the compromises arising in the design mean that the expected advantages have not been realized