982 resultados para state equations
Resumo:
WA’s experience, as portrayed in this volume, not only highlights the changeable nature of the mining industry, the volatility of global commodity markets and the impact of global capital on people and place, it also draws into question the promise of lasting value derived from resource development as currently practiced. It is in this context that Chapter 18 revisits WA's resource boom and assesses the sustainability of resource-led development in the state, to arrive at an answer to the question of ‘curse or cure?’. Opening up the discourse beyond the dominant developmentalist narrative invites discussion on new perspectives of economic sustainability that include well-being, equity and the protection of people, culture and place.
Resumo:
Fractional differential equations have been increasingly used as a powerful tool to model the non-locality and spatial heterogeneity inherent in many real-world problems. However, a constant challenge faced by researchers in this area is the high computational expense of obtaining numerical solutions of these fractional models, owing to the non-local nature of fractional derivatives. In this paper, we introduce a finite volume scheme with preconditioned Lanczos method as an attractive and high-efficiency approach for solving two-dimensional space-fractional reaction–diffusion equations. The computational heart of this approach is the efficient computation of a matrix-function-vector product f(A)bf(A)b, where A A is the matrix representation of the Laplacian obtained from the finite volume method and is non-symmetric. A key aspect of our proposed approach is that the popular Lanczos method for symmetric matrices is applied to this non-symmetric problem, after a suitable transformation. Furthermore, the convergence of the Lanczos method is greatly improved by incorporating a preconditioner. Our approach is show-cased by solving the fractional Fisher equation including a validation of the solution and an analysis of the behaviour of the model.
Resumo:
Since the revisions to the International Health Regulations (IHR) in 2005, much attention has turned to how states, particularly developing states, will address core capacity requirements attached to the revised IHR. Primarily, how will states strengthen their capacity to identify and verify public health emergencies of international concern (PHEIC)? Another important but under-examined aspect of the revised IHR is the empowerment of the World Health Organization (WHO) to act upon non-governmental reports of disease outbreaks. The revised IHR potentially marks a new chapter in the powers of ‘disease intelligence’ and how the WHO may press states to verify an outbreak event. This article seeks to understand whether internet surveillance response programs (ISRPs) are effective in ‘naming and shaming’ states into reporting disease outbreaks.
Resumo:
This is an update of an earlier paper, and is written for Excel 2007. A series of Excel 2007 models is described. The more advanced versions allow solution of f(x)=0 by examining change of sign of function values. The function is graphed and change of sign easily detected by a change of colour. Relevant features of Excel 2007 used are Names, Scatter Chart and Conditional Formatting. Several sample Excel 2007 models are available for download, and the paper is intended to be used as a lesson plan for students having some familiarity with derivatives. For comparison and reference purposes, the paper also presents a brief outline of several common equation-solving strategies as an Appendix.
Resumo:
Solving indeterminate algebraic equations in integers is a classic topic in the mathematics curricula across grades. At the undergraduate level, the study of solutions of non-linear equations of this kind can be motivated by the use of technology. This article shows how the unity of geometric contextualization and spreadsheet-based amplification of this topic can provide a discovery experience for prospective secondary teachers and information technology students. Such experience can be extended to include a transition from a computationally driven conjecturing to a formal proof based on a number of simple yet useful techniques.
Resumo:
We first classify the state-of-the-art stream authentication problem in the multicast environment and group them into Signing and MAC approaches. A new approach for authenticating digital streams using Threshold Techniques is introduced. The new approach main advantages are in tolerating packet loss, up to a threshold number, and having a minimum space overhead. It is most suitable for multicast applications running over lossy, unreliable communication channels while, in same time, are pertain the security requirements. We use linear equations based on Lagrange polynomial interpolation and Combinatorial Design methods.
Resumo:
This paper presents algebraic attacks on SOBER-t32 and SOBER-t16 without stuttering. For unstuttered SOBER-t32, two different attacks are implemented. In the first attack, we obtain multivariate equations of degree 10. Then, an algebraic attack is developed using a collection of output bits whose relation to the initial state of the LFSR can be described by low-degree equations. The resulting system of equations contains 2^69 equations and monomials, which can be solved using the Gaussian elimination with the complexity of 2^196.5. For the second attack, we build a multivariate equation of degree 14. We focus on the property of the equation that the monomials which are combined with output bit are linear. By applying the Berlekamp-Massey algorithm, we can obtain a system of linear equations and the initial states of the LFSR can be recovered. The complexity of attack is around O(2^100) with 2^92 keystream observations. The second algebraic attack is applicable to SOBER-t16 without stuttering. The attack takes around O(2^85) CPU clocks with 2^78 keystream observations.
Resumo:
Several recently proposed ciphers, for example Rijndael and Serpent, are built with layers of small S-boxes interconnected by linear key-dependent layers. Their security relies on the fact, that the classical methods of cryptanalysis (e.g. linear or differential attacks) are based on probabilistic characteristics, which makes their security grow exponentially with the number of rounds N r r. In this paper we study the security of such ciphers under an additional hypothesis: the S-box can be described by an overdefined system of algebraic equations (true with probability 1). We show that this is true for both Serpent (due to a small size of S-boxes) and Rijndael (due to unexpected algebraic properties). We study general methods known for solving overdefined systems of equations, such as XL from Eurocrypt’00, and show their inefficiency. Then we introduce a new method called XSL that uses the sparsity of the equations and their specific structure. The XSL attack uses only relations true with probability 1, and thus the security does not have to grow exponentially in the number of rounds. XSL has a parameter P, and from our estimations is seems that P should be a constant or grow very slowly with the number of rounds. The XSL attack would then be polynomial (or subexponential) in N r> , with a huge constant that is double-exponential in the size of the S-box. The exact complexity of such attacks is not known due to the redundant equations. Though the presented version of the XSL attack always gives always more than the exhaustive search for Rijndael, it seems to (marginally) break 256-bit Serpent. We suggest a new criterion for design of S-boxes in block ciphers: they should not be describable by a system of polynomial equations that is too small or too overdefined.
Resumo:
In this paper we introduce a new technique to obtain the slow-motion dynamics in nonequilibrium and singularly perturbed problems characterized by multiple scales. Our method is based on a straightforward asymptotic reduction of the order of the governing differential equation and leads to amplitude equations that describe the slowly-varying envelope variation of a uniformly valid asymptotic expansion. This may constitute a simpler and in certain cases a more general approach toward the derivation of asymptotic expansions, compared to other mainstream methods such as the method of Multiple Scales or Matched Asymptotic expansions because of its relation with the Renormalization Group. We illustrate our method with a number of singularly perturbed problems for ordinary and partial differential equations and recover certain results from the literature as special cases. © 2010 - IOS Press and the authors. All rights reserved.
Resumo:
With nine examples, we seek to illustrate the utility of the Renormalization Group approach as a unification of other asymptotic and perturbation methods.
Resumo:
This article elucidates and analyzes the fundamental underlying structure of the renormalization group (RG) approach as it applies to the solution of any differential equation involving multiple scales. The amplitude equation derived through the elimination of secular terms arising from a naive perturbation expansion of the solution to these equations by the RG approach is reduced to an algebraic equation which is expressed in terms of the Thiele semi-invariants or cumulants of the eliminant sequence { Zi } i=1 . Its use is illustrated through the solution of both linear and nonlinear perturbation problems and certain results from the literature are recovered as special cases. The fundamental structure that emerges from the application of the RG approach is not the amplitude equation but the aforementioned algebraic equation. © 2008 The American Physical Society.
Resumo:
This article lays down the foundations of the renormalization group (RG) approach for differential equations characterized by multiple scales. The renormalization of constants through an elimination process and the subsequent derivation of the amplitude equation [Chen, Phys. Rev. E 54, 376 (1996)] are given a rigorous but not abstract mathematical form whose justification is based on the implicit function theorem. Developing the theoretical framework that underlies the RG approach leads to a systematization of the renormalization process and to the derivation of explicit closed-form expressions for the amplitude equations that can be carried out with symbolic computation for both linear and nonlinear scalar differential equations and first order systems but independently of their particular forms. Certain nonlinear singular perturbation problems are considered that illustrate the formalism and recover well-known results from the literature as special cases. © 2008 American Institute of Physics.
Resumo:
We have developed a technique that circumvents the process of elimination of secular terms and reproduces the uniformly valid approximations, amplitude equations, and first integrals. The technique is based on a rearrangement of secular terms and their grouping into the secular series that multiplies the constants of the asymptotic expansion. We illustrate the technique by deriving amplitude equations for standard nonlinear oscillator and boundary-layer problems. © 2008 The American Physical Society.
Resumo:
Carbon nanoflakes (CNFLs) are synthesized on silicon substrates deposited with carbon islands in a methane environment using hot filament chemical vapor deposition. The structure and composition of the CNFLs are studied using field emission scanning electron microscopy, high-resolution transmission electron microscopy, micro-Raman spectroscopy, and X-ray photoelectron spectroscopy. The results indicate that the CNFLs are composed of multilayer graphitic sheets and the area and thickness of CNFs increase with the growth time. The photoluminescence (PL) of CNFLs excited by a 325 nm He-Cd laser exhibits three strong bands centered at 408, 526, and 699 nm, which are related to the chemical radicals terminated on the CNFLs and the associated interband transitions. The PL results indicate that the CNFLs are promising as an advanced nano-carbon material capable of generating white light emission. These outcomes are significant to control the electronic structure of CNFLs and contribute to the development of next-generation solid-state white light emission devices. © 2014 the Partner Organisations.
Resumo:
A global, or averaged, model for complex low-pressure argon discharge plasmas containing dust grains is presented. The model consists of particle and power balance equations taking into account power loss on the dust grains and the discharge wall. The electron energy distribution is determined by a Boltzmann equation. The effects of the dust and the external conditions, such as the input power and neutral gas pressure, on the electron energy distribution, the electron temperature, the electron and ion number densities, and the dust charge are investigated. It is found that the dust subsystem can strongly affect the stationary state of the discharge by dynamically modifying the electron energy distribution, the electron temperature, the creation and loss of the plasma particles, as well as the power deposition. In particular, the power loss to the dust grains can take up a significant portion of the input power, often even exceeding the loss to the wall.