965 resultados para stars : neutron


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy of the vh9/2 orbital in nuclei above N = 82 drops rapidly in energy relative to the vf7/2 orbital as the occupancy of the πh11/2 orbital increases. These two neutron orbitals become nearly degenerate as the proton drip line is approached. In this work, we have discovered the new nuclides 161Os and 157W, and studied the decays of the proton emitter 160Re in detail. The 161Os and 160Re nuclei were produced in reactions of 290, 300 and 310 MeV 58Ni ions with an isotopically enriched 106Cd target, separated in‐flight using the RITU separator and implanted into the GREAT spectrometer. The 161Os α a decays populated the new nuclide 157W, which decayed by β‐particle emission. The β decay fed the known α‐decaying 1/2+ and 11/2− states in 157Ta, which is consistent with a vf7/2 ground state in 157W. The measured α‐decay energy and half‐life for 161Os correspond to a reduced α‐decay width that is compatible with s‐wave α‐particle emission, implying that its ground state is also a vf7/2 state. Over 7000 160Re nuclei were produced and the γ decays of a new isomeric state feeding the πd3/2 level in 160Re were discovered, but no evidence for the proton or a decay of the expected πh11/2 state could be found. The isomer decays offer a natural explanation for this non‐observation and provides a striking example of the influence of the near degeneracy of the vh9/2 and vf7/2 orbitals on the properties of nuclei in this region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variable-temperature powder neutron diffraction data reveal that Co3Sn2S2 crystallizes in the shandite structure (space group R (3) over barm, a = 5.36855(3)angstrom, c = 13.1903(1) angstrom at 300 K). The structural relationship between Co3Sn2S2 and the intermetallic compound CoSn, both of which contain Kagome nets of cobalt atoms, is discussed. Resistivity and Seebeck coefficient measurements for Co3Sn2S2 are consistent with metallic behaviour. Magnetic susceptibility measurements indicate that Co3Sn2S2 orders ferromagnetically at 180(10) K, with a saturation moment of 0.29 mu(B) per cobalt atom at 5 K. The onset of magnetic ordering is accompanied by marked anomalies in the electrical transport properties. (c) 2008 Elsevier Masson SAS. All rights reserve

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nickel cyanide is a layered material showing markedly anisotropic behaviour. High-pressure neutron diffraction measurements show that at pressures up to 20.1 kbar, compressibility is much higher in the direction perpendicular to the layers, c, than in the plane of the strongly chemically bonded metal-cyanide sheets. Detailed examination of the behaviour of the tetragonal lattice parameters, a and c, as a function of pressure reveal regions in which large changes in slope occur, for example, in c(P) at 1 kbar. The experimental pressure dependence of the volume data is fitted to a bulk modulus, B0, of 1050 (20) kbar over the pressure range 0–1 kbar, and to 124 (2) kbar over the range 1–20.1 kbar. Raman spectroscopy measurements yield additional information on how the structure and bonding in the Ni(CN)2 layers change with pressure and show that a phase change occurs at about 1 kbar. The new high-pressure phase, (Phase PII), has ordered cyanide groups with sheets of D4h symmetry containing Ni(CN)4 and Ni(NC)4 groups. The Raman spectrum of phase PII closely resembles that of the related layered compound, Cu1/2Ni1/2(CN)2, which has previously been shown to contain ordered C≡N groups. The phase change, PI to PII, is also observed in inelastic neutron scattering studies which show significant changes occurring in the phonon spectra as the pressure is raised from 0.3 to 1.5 kbar. These changes reflect the large reduction in the interlayer spacing which occurs as Phase PI transforms to Phase PII and the consequent increase in difficulty for out-of-plane atomic motions. Unlike other cyanide materials e.g. Zn(CN)2 and Ag3Co(CN)6, which show an amorphization and/or a decomposition at much lower pressures (~100 kbar), Ni(CN)2 can be recovered after pressurising to 200 kbar, albeit in a more ordered form.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combined application of neutron reflectometry (NR) and ellipsometry to determine the oxidation kinetics of organic monolayers at the air–water interface is described for the first time. This advance was possible thanks to a new miniaturised reaction chamber that is compatible with the two techniques and has controlled gas delivery. The rate coefficient for the oxidation of methyl oleate monolayers by gas-phase O3 determined using NR is (5.4 ± 0.6) × 10−10 cm2 per molecule per s, which is consistent with the value reported in the literature but is now better constrained. This highlights the potential for the investigation of faster atmospheric reactions in future studies. The rate coefficient determined using ellipsometry is (5.0 ± 0.9) × 10−10 cm2 per molecule per s, which indicates the potential of this more economical, laboratory-based technique to be employed in parallel with NR. In this case, temporal fluctuations in the optical signal are attributed to the mobility of islands of reaction products. We outline how such information may provide critical missing information in the identification of transient reaction products in a range of atmospheric surface reactions in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed study was performed for a sample of low-mass pre-main-sequence (PMS) stars, previously identified as weak-line T Tauri stars, which are compared to members of the Tucanae and Horologium Associations. Aiming to verify if there is any pattern of abundances when comparing the young stars at different phases, we selected objects in the range from 1 to 100 Myr, which covers most of PMS evolution. High-resolution optical spectra were acquired at European Southern Observatory and Observatorio do Pico dos Dias. The stellar fundamental parameters effective temperature and gravity were calculated by excitation and ionization equilibria of iron absorption lines. Chemical abundances were obtained via equivalent width calculations and spectral synthesis for 44 per cent of the sample, which shows metallicities within 0.5 dex solar. A classification was developed based on equivalent width of Li I 6708 angstrom and Ha lines and spectral types of the studied stars. This classification allowed a separation of the sample into categories that correspond to different evolutive stages in the PMS. The position of these stars in the Hertzsprung-Russell diagram was also inspected in order to estimate their ages and masses. Among the studied objects, it was verified that our sample actually contains seven weak-line T Tauri stars, three are Classical T Tauri, 12 are Fe/Ge PMS stars and 21 are post-T Tauri or young main-sequence stars. An estimation of circumstellar luminosity was obtained using a disc model to reproduce the observed spectral energy distribution. Most of the stars show low levels of circumstellar emission, corresponding to less than 30 per cent of the total emission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotationally-split modes can provide valuable information about the internal rotation profile of stars. This has been used for years to infer the internal rotation behavior of the Sun. The present work discusses the potential additional information that rotationally splitting asymmetries may provide when studying the internal rotation profile of stars. We present here some preliminary results of a method, currently under development, which intends: 1) to understand the variation of the rotational splitting asymmetries in terms of physical processes acting on the angular momentum distribution in the stellar interior, and 2) how this information can be used to better constrain the internal rotation profile of the stars. The accomplishment of these two objectives should allow us to better use asteroseismology as a test-bench of the different theories describing the angular momentum distribution and evolution in the stellar interiors. (C) 2010 WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is generally assumed that the magnetic fields of millisecond pulsars (MSPs) are similar to 10(8) G. We argue that this may not be true and the fields may be appreciably greater. We present six evidences for this: (1) The similar to 10(8)G field estimate is based on magnetic dipole emission losses which is shown to be questionable; (2) The MSPs in low mass X-ray binaries (LMXBs) are claimed to have < 10(11) G on the basis of a Rayleygh-Taylor instability accretion argument. We show that the accretion argument is questionable and the upper limit 10(11) G may be much higher; (3) Low magnetic field neutron stars have difficulty being produced in LMXBs; (4) MSPs may still be accreting indicating a much higher magnetic field; (5) The data that predict similar to 10(8) G for MSPs also predict ages on the order of, and greater than, ten billion years, which is much greater than normal pulsars. If the predicted ages are wrong, most likely the predicted similar to 10(8) G fields of MSPs are wrong; (6) When magnetic fields are measured directly with cyclotron lines in X-ray binaries, fields a parts per thousand << 10(8) G are indicated. Other scenarios should be investigated. One such scenario is the following. Over 85% of MSPs are confirmed members of a binary. It is possible that all MSPs are in large separation binaries having magnetic fields > 10(8) G with their magnetic dipole emission being balanced by low level accretion from their companions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We construct and compare in this work a variety of simple models for strange stars, namely, hypothetical self-bound objects made of a cold stable version of the quark-gluon plasma. Exact, quasi-exact and numerical models are examined to find the most economical description for these objects. A simple and successful parametrization of them is given in terms of the central density, and the differences among the models are explicitly shown and discussed. In particular, we present a model starting with a Gaussian ansatz for the density profile that provides a very accurate and almost complete analytical integration of the problem, modulo a small difference for one of the metric potentials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on our previous work, we investigate here the effects on the wind and magnetospheric structures of weak-lined T Tauri stars due to a misalignment between the axis of rotation of the star and its magnetic dipole moment vector. In such a configuration, the system loses the axisymmetry presented in the aligned case, requiring a fully three-dimensional (3D) approach. We perform 3D numerical magnetohydrodynamic simulations of stellar winds and study the effects caused by different model parameters, namely the misalignment angle theta(t), the stellar period of rotation, the plasma-beta, and the heating index.. Our simulations take into account the interplay between the wind and the stellar magnetic field during the time evolution. The system reaches a periodic behavior with the same rotational period of the star. We show that the magnetic field lines present an oscillatory pattern. Furthermore, we obtain that by increasing theta(t), the wind velocity increases, especially in the case of strong magnetic field and relatively rapid stellar rotation. Our 3D, time-dependent wind models allow us to study the interaction of a magnetized wind with a magnetized extrasolar planet. Such interaction gives rise to reconnection, generating electrons that propagate along the planet`s magnetic field lines and produce electron cyclotron radiation at radio wavelengths. The power released in the interaction depends on the planet`s magnetic field intensity, its orbital radius, and on the stellar wind local characteristics. We find that a close-in Jupiter-like planet orbiting at 0.05 AU presents a radio power that is similar to 5 orders of magnitude larger than the one observed in Jupiter, which suggests that the stellar wind from a young star has the potential to generate strong planetary radio emission that could be detected in the near future with LOFAR. This radio power varies according to the phase of rotation of the star. For three selected simulations, we find a variation of the radio power of a factor 1.3-3.7, depending on theta(t). Moreover, we extend the investigation done in Vidotto et al. and analyze whether winds from misaligned stellar magnetospheres could cause a significant effect on planetary migration. Compared to the aligned case, we show that the timescale tau(w) for an appreciable radial motion of the planet is shorter for larger misalignment angles. While for the aligned case tau(w) similar or equal to 100 Myr, for a stellar magnetosphere tilted by theta(t) = 30 degrees, tau(w) ranges from similar to 40 to 70 Myr for a planet located at a radius of 0.05 AU. Further reduction on tau(w) might occur for even larger misalignment angles and/or different wind parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By means of numerical simulations, we investigate magnetized stellar winds of pre-main-sequence stars. In particular, we analyze under which circumstances these stars will present elongated magnetic features (e.g., helmet streamers, slingshot prominences, etc). We focus on weak-lined T Tauri stars, as the presence of the tenuous accretion disk is not expected to have strong influence on the structure of the stellar wind. We show that the plasma-beta parameter (the ratio of thermal to magnetic energy densities) is a decisive factor in defining the magnetic configuration of the stellar wind. Using initial parameters within the observed range for these stars, we show that the coronal magnetic field configuration can vary between a dipole-like configuration and a configuration with strong collimated polar lines and closed streamers at the equator (multicomponent configuration for the magnetic field). We show that elongated magnetic features will only be present if the plasma-beta parameter at the coronal base is beta(0) << 1. Using our self-consistent three-dimensional magnetohydrodynamics model, we estimate for these stellar winds the timescale of planet migration due to drag forces exerted by the stellar wind on a hot-Jupiter. In contrast to the findings of Lovelace et al., who estimated such timescales using the Weber and Davis model, our model suggests that the stellar wind of these multicomponent coronae are not expected to have significant influence on hot-Jupiters migration. Further simulations are necessary to investigate this result under more intense surface magnetic field strengths (similar to 2-3 kG) and higher coronal base densities, as well as in a tilted stellar magnetosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By means of self-consistent three-dimensional magnetohydrodynamics (MHD) numerical simulations, we analyze magnetized solar-like stellar winds and their dependence on the plasma-beta parameter (the ratio between thermal and magnetic energy densities). This is the first study to perform such analysis solving the fully ideal three-dimensional MHD equations. We adopt in our simulations a heating parameter described by gamma, which is responsible for the thermal acceleration of the wind. We analyze winds with polar magnetic field intensities ranging from 1 to 20 G. We show that the wind structure presents characteristics that are similar to the solar coronal wind. The steady-state magnetic field topology for all cases is similar, presenting a configuration of helmet streamer-type, with zones of closed field lines and open field lines coexisting. Higher magnetic field intensities lead to faster and hotter winds. For the maximum magnetic intensity simulated of 20 G and solar coronal base density, the wind velocity reaches values of similar to 1000 km s(-1) at r similar to 20r(0) and a maximum temperature of similar to 6 x 10(6) K at r similar to 6r(0). The increase of the field intensity generates a larger ""dead zone"" in the wind, i.e., the closed loops that inhibit matter to escape from latitudes lower than similar to 45 degrees extend farther away from the star. The Lorentz force leads naturally to a latitude-dependent wind. We show that by increasing the density and maintaining B(0) = 20 G the system recover back to slower and cooler winds. For a fixed gamma, we show that the key parameter in determining the wind velocity profile is the beta-parameter at the coronal base. Therefore, there is a group of magnetized flows that would present the same terminal velocity despite its thermal and magnetic energy densities, as long as the plasma-beta parameter is the same. This degeneracy, however, can be removed if we compare other physical parameters of the wind, such as the mass-loss rate. We analyze the influence of gamma in our results and we show that it is also important in determining the wind structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

K-band spectra of young stellar candidates in four Southern hemisphere clusters have been obtained with the Gemini Near-Infrared Spectrograph in Gemini South. The clusters are associated with IRAS sources that have colours characteristic of ultracompact H II regions. Spectral types were obtained by comparison of the observed spectra with those of a near-infrared (NIR) library; the results include the spectral classification of nine massive stars and seven objects confirmed as background late-type stars. Two of the studied sources have K-band spectra compatible with those characteristic of very hot stars, as inferred from the presence of C IV, N III and N V emission lines at 2.078, 2.116 and 2.100 mu m, respectively. One of them, I16177_IRS1, has a K-band spectrum similar to that of Cyg OB2 7, an O3If* supergiant star. The nebular K-band spectrum of the associated Ultra-Compact (UC) H II region shows the s-process [Kr III] and [Se IV] high excitation emission lines, previously identified only in planetary nebula. One young stellar object was found in each cluster, associated with either the main IRAS source or a nearby resolved Midecourse Space eXperiment (MSX) component, confirming the results obtained from previous NIR photometric surveys. The distances to the stars were derived from their spectral types and previously determined JHK magnitudes; they agree well with the values obtained from the kinematic method, except in the case of IRAS 15408-5356, for which the spectroscopic distance is about a factor of 2 smaller than the kinematic value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present preliminary results for the estimation of barium [Ba/Fe], and strontium [Sr/Fe], abundances ratios using medium-resolution spectra (1-2 angstrom). We established a calibration between the abundance ratios and line indices for Ba and Sr, using multiple regression and artificial neural network techniques. A comparison between the two techniques (showing the advantage of the latter), as well as a discussion of future work, is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a comprehensive analysis of the spatial, kinematic and chemical properties of stars and globular clusters (GCs) in the `ordinary` elliptical galaxy NGC 4494 using data from the Keck and Subaru telescopes. We derive galaxy surface brightness and colour profiles out to large galactocentric radii. We compare the latter to metallicities derived using the near-infrared Calcium Triplet. We obtain stellar kinematics out to similar to 3.5 effective radii. The latter appear flattened or elongated beyond similar to 1.8 effective radii in contrast to the relatively round photometric isophotes. In fact, NGC 4494 may be a flattened galaxy, possibly even an S0, seen at an inclination of similar to 45 degrees. We publish a catalogue of 431 GC candidates brighter than i(0) = 24 based on the photometry, of which 109 are confirmed spectroscopically and 54 have measured spectroscopic metallicities. We also report the discovery of three spectroscopically confirmed ultra-compact dwarfs around NGC 4494 with measured metallicities of -0.4 less than or similar to [Fe/H] less than or similar to -0.3. Based on their properties, we conclude that they are simply bright GCs. The metal-poor GCs are found to be rotating with similar amplitude as the galaxy stars, while the metal-rich GCs show marginal rotation. We supplement our analysis with available literature data and results. Using model predictions of galaxy formation, and a suite of merger simulations, we find that many of the observational properties of NGC 4494 may be explained by formation in a relatively recent gas-rich major merger. Complete studies of individual galaxies incorporating a range of observational avenues and methods such as the one presented here will be an invaluable tool for constraining the fine details of galaxy formation models, especially at large galactocentric radii.