538 resultados para spraying
Resumo:
Includes bibliographies.
Resumo:
The nature and use of certain insecticides / J.L. Phillips and H.L. Price -- Orchard technique. I. The fruit soils of Virginia. II. Fruit list for Virginia / Wm. B. Alwood -- Orchard technique. III. Growing the apple orchard / Wm. B. Alwood -- Orchard Technique. IV. Spraying the orchard / Wm. B. Alwood -- Orchard technique. V. Apple production in Virginia / Wm. B. Alwood.
Resumo:
Mode of access: Internet.
Resumo:
Mimeographed.
Resumo:
Includes index.
Resumo:
"December 1970."
Resumo:
"Submitted to the Environmental Protection Agency on September 12, 1977 and November 30, 1978."
Resumo:
"Agricultural Research Service...in cooperation with College of Agriculture, Washington State University and under contract with Pacific Northwest Laboratories, Battelle Memorial Institute."
Resumo:
Issued Nov. 1978.
Resumo:
Mode of access: Internet.
Resumo:
"Compiled and edited by": 1921-24, L.B. Mackenzie, H.S. Card; 1926-32, H.S. Card; 1938-41, "re-edited by" Stuart Plumley; 1943- "completely revised and re-edited by" T.B. Jefferson.
Resumo:
A study was made to determine the conditions under which the optimum droplet size distribution (ie., narrowest size range with a minimum of fines and over-sized agglomerates), is generated in sprays from centrifugal pressure nozzles. A range of non-Newtonian detergent slurries were tested but the results are of wider application and parallel work was undertaken with water, ionic solutions and chalk slurries. Six centrifugal pressure nozzles were used and the drop-size distributions correlated as a function of fluid properties, pressure, fiowrate, feed temperature, and nozzle characteristics. Measurements were made using a Malvern Particle Size Anayser slung across a specially-designed transparent tower section of approximately 1.2m diameter in order to reduce obscuration caused by the spray and improve existing droplet sizing techniques. The results obtained were based upon the Rosin-Rammler distribution model and the Size Analyser provided a direct print-out of size distribution and the parameters characterising it. A Spraying System nozzle, AAASSTC8-8, produced the optimum spray distribution with the detergent slurry at a temperature of 60°C whilst operating at 1200 psi. With other fluids the Delevan 2.2SJ nozzle produced the optimum spray distribution operating at 1200 psi but with the Spraying Systems nozzles there was no clear-cut optimum set of conditions, ie. the nozzle and pressure varied depending upon the fluid being sprayed. The mechanisms of liquid sheet break-up and droplet dispersion were investigated in specially-constructed, scaled-up, transparent nozzles. A mathematical model of centrifugal pressure nozzle atomisation was developed based upon fundamental operating parameters rather than resorting to empirical correlations. This enabled theoretical predictions to be made over a wide range of operating conditions and nozzle types. The model predictions for volumetric fiowrate, liquid sheet length and air core diameter showed good agreement with the experimentally determined results. However, the model predicted smaller droplet sizes than were produced experimentally due to inaccuracies identified in the initial assumptions.
Resumo:
Mechanical seals are used extensively to seal machinery such as pumps, mixers and agitators in the oil, petrochemical and chemical industries. The performance of such machinery is critically dependent on these devices. Seal failures may result in the escape of dangerous chemicals, possibly causing injury or loss of life. Seal performance is limited by the choice of face materials available. These range from cast iron and stellited stainless steel to cemented and silicon carbides. The main factors that affect seal performance are the wear and corrosion of seal faces. This research investigated the feasibility of applying surface coating/treatments to seal materials, in order to provide improved seal performance. Various surface coating/treatment methods were considered; these included electroless nickel plating, ion plating, plasma nitriding, thermal spraying and high temperature diffusion processes. The best wear resistance, as evaluated by the Pin-on-Disc wear test method, was conferred by the sprayed tungsten carbide/nickel/tungsten-chromium carbide deposit, produced by the high energy plasma spraying (Jet-Kote) process. In general, no correlation was found between hardness and wear resistance or surface finish and friction. This is due primarily to the complexity of the wear and frictional oxidation, plastic deformation, ploughing, fracture and delamination. Corrosion resistance was evaluated by Tafel extrapolation, linear polarisation and anodic potentiodynamic polarisation techniques. The best corrosion performance was exhibited by an electroless nickel/titanium nitride duplex coating due to the passivity of the titanium nitride layer in the acidified salt solution. The surface coating/treatments were ranked using a systematic method, which also considered other properties such as adhesion, internal stress and resistance to thermal cracking. The sealing behaviour of surface coated/treated seals was investigated on an industrial seal testing rig. The best sealing performances were exhibited by the Jet-Kote and electroless nickel silicon carbide composite coated seals. The failure of the electroless nickel and electroless nickel/titanium nitride duplex coated seals was due to inadequate adhesion of the deposits to the substrate. Abrasion of the seal faces was the principal wear mechanism. For operation in an environment similar to the experimental system employed (acidified salt solution) the Jet-Kote deposit appears to be the best compromise.
Resumo:
High velocity oxyfuel (HVOF) thermal spraying is one of the most significant developments in the thermal spray industry since the development of the original plasma spray technique. The first investigation deals with the combustion and discrete particle models within the general purpose commercial CFD code FLUENT to solve the combustion of kerosene and couple the motion of fuel droplets with the gas flow dynamics in a Lagrangian fashion. The effects of liquid fuel droplets on the thermodynamics of the combusting gas flow are examined thoroughly showing that combustion process of kerosene is independent on the initial fuel droplet sizes. The second analysis copes with the full water cooling numerical model, which can assist on thermal performance optimisation or to determine the best method for heat removal without the cost of building physical prototypes. The numerical results indicate that the water flow rate and direction has noticeable influence on the cooling efficiency but no noticeable effect on the gas flow dynamics within the thermal spraying gun. The third investigation deals with the development and implementation of discrete phase particle models. The results indicate that most powder particles are not melted upon hitting the substrate to be coated. The oxidation model confirms that HVOF guns can produce metallic coating with low oxidation within the typical standing-off distance about 30cm. Physical properties such as porosity, microstructure, surface roughness and adhesion strength of coatings produced by droplet deposition in a thermal spray process are determined to a large extent by the dynamics of deformation and solidification of the particles impinging on the substrate. Therefore, is one of the objectives of this study to present a complete numerical model of droplet impact and solidification. The modelling results show that solidification of droplets is significantly affected by the thermal contact resistance/substrate surface roughness.
Resumo:
The mechanisms involved in the production of chromate-phosphate conversion coatings on aluminium have been investigated. A sequence of coating nucleation and growth has been outlined and the principle roles of the constituent ingredients of the chromate-phosphate solution have been shown. The effect of dissolved aluminium has been studied and its role in producing sound conversion coatings has been shown. Metallic contamination has been found to have a dramatic influence on chromate-phosphate coatings when particular levels have been exceeded. Coating formation was seen to be affected in proportion to the level of contaminaton; no evidence of sudden failure was noted. The influence of substrate and the effect of an acidic cleaner prior to conversion coating have been studied and explained. It was found that the cleaner ages rapidly and that this must .be allowed for when attempting to reproduce industrial conditions in the laboratory. A study was carried out on the flowing characteristics of polyester powders of various size distributions as they melt using the hot-stage microscopy techniques developed at Aston. It was found that the condition of the substrate (ie extent of pretreatment), had a significant effect on particle flow. This was explained by considering the topography of the substrate surface. A number of 'low-bake' polyester powders were developed and tested for mechanical, physical and chemical resistance. The best formulation had overall properties which were as good as the standard polyester in many respects. However chemical resistance was found to be slightly lower. The charging characteristics of powder paints during application by means of electrostatic spraying was studied by measuring the charge per unit mass and relating this to the surface area. A high degree of correlation was found between charge carried and surface area, and the charge retained was related to the powder's formulation.