962 resultados para spinal sensitization
Resumo:
Purpose To provide normal values of the cervical spinal canal and spinal cord dimensions in several planes with respect to spinal level, age, sex, and body height. Materials and Methods This study was approved by the institutional review board; all individuals provided signed informed consent. In a prospective multicenter study, two blinded raters independently examined cervical spine magnetic resonance (MR) images of 140 healthy volunteers who were white. The midsagittal diameters and areas of spinal canal and spinal cord, respectively, were measured at the midvertebral levels of C1, C3, and C6. A multivariate general linear model described the influence of sex, body height, age, and spinal level on the measured values. Results There were differences for sex, spinal level, interaction between sex and level, and body height, while age had significant yet limited influence. Normative ranges for the sagittal diameters and areas of spinal canal and spinal cord were defined at C1, C3, and C6 levels for men and women. In addition to a calculation of normative ranges for a specific sex, spinal level, age, and body height data, data for three different height subgroups at 45 years of age were extracted. These results show a range of the spinal canal dimensions at C1 (from 10.7 to 19.7 mm), C3 (from 9.4 to 17.2 mm), and C6 (from 9.2 to 16.8 mm) levels. Conclusion : The dimensions of the cervical spinal canal and cord in healthy individuals are associated with spinal level, sex, age, and height. © RSNA, 2013 Online supplemental material is available for this article.
Resumo:
Body height decreases throughout the day due to fluid loss from the intervertebral disk. This study investigated whether spinal shrinkage was greater during workdays compared with nonwork days, whether daily work stressors were positively related to spinal shrinkage, and whether job control was negatively related to spinal shrinkage. In a consecutive 2-week ambulatory field study, including 39 office employees and 512 days of observation, spinal shrinkage was measured by a stadiometer, and calculated as body height in the morning minus body height in the evening. Physical activity was monitored throughout the 14 days by accelerometry. Daily work stressors, daily job control, biomechanical workload, and recreational activities after work were measured with daily surveys. Multilevel regression analyses showed that spinal disks shrank more during workdays than during nonwork days. After adjustment for sex, age, body weight, smoking status, biomechanical work strain, and time spent on physical and low-effort activities during the day, lower levels of daily job control significantly predicted increased spinal shrinkage. Findings add to knowledge on how work redesign that increases job control may possibly contribute to preserving intervertebral disk function and preventing occupational back pain.
Resumo:
Objective: Perimedullary arteriovenous fistulas (PMAVF) are exceptional spinal vascular malformations and their best therapeutic management remains controversial. Here the authors present their experience with PMAVF to characterize the clinical, neuroimaging and treatment data of patients operated on PMAVF and to analyse both incidence of complications and resurgery in the microsurgical therapy of PMAVF. Method: Fifteen patients (13 men, 2 women, mean age 51 years) with PMAVF identified by selective spinal angiography were microsurgically treated at our institution between 1992 and 2006. The presenting symptoms (duration 3 months to 5 years) were consistent with progressive myelopathy (13) or included isolated pain syndrome (2). Lumbar PMAVF location (6) was predominant followed by the sacral (5) and thoracic (4) site including 6 PMAVF of the filum terminale and 2 PMAVF associated with a glomerular AVM and dural arteriovenous fistula, respectively. Microsurgical PMAVF obliteration and postoperative angiography were routinely performed. All patients were available for follow-up evaluation within 6 months postoperatively. Results: Surgery with complete (12) or almost complete (3) PMAVF occlusion resulted in neurological improvement (10) or stabilization (1), 4 patients deteriorated postoperatively. Whereas no complications occured, a second operation because of residual or recanalized PMAVF was indicated in one case each. Two associated dual spinal vascular malformations could be observed and subsequently obliterated. Conclusions: Microsurgical occlusion of PMAVF appears to be a secure and adequate therapeutic option that prevents progressive neurological deterioration and results in good outcome in the majority of patients. Complications associated with surgery, recurrences and reoperations are infrequent. Therefore, in the authors experience microsurgery is the preferred therapy to treat PMAVF. Despite the rarity of PMAVF the possibility of the coincidence of associated second vascular malformations should be considered.
Resumo:
Behavioral sensitization is defined as the subsequent augmentation of the locomotor response to a drug following repeated administrations of the drug. It is believed to occur due to alterations in the motive circuit in the brain by stressors, central nervous system stimulants, and similar stimuli. The motive circuit (or mesocorticolimbic system) consists of several interconnected nuclei that determine the behavioral response to significant biological stimuli. A final target of the mesocorticolimbic system is the nucleus accumbens (NAc), which is a key structure linking motivation and action. In particular, the dopaminergic innervations of the Nac are considered to be essential in regulating motivated states of behavior such as goal-directed actions, stimulus-reward associations and reinforcement by addictive substances. Therefore, the objective of this study was to investigate the role of dopaminergic afferents of the NAc in the behavioral sensitization elicited by chronic treatment with methylphenidate (MPD), a psychostimulant that is widely used to treat attention deficit hyperactivity disorder. The dopaminergic afferents can be selectively destroyed using catecholamine neurotoxin 6-hydroxydopamine (6-OHDA). In order to determine whether destruction of dopaminergic afferents of the NAc prevents sensitization, I compared locomotor activity in rats that had received infusions of 6-hydroxydopamine (6-OHDA) into the NAc with that of control and sham-operated animals. All groups of rats received six days of single daily MPD injections after measuring their pre and post surgery locomotor baseline. Following the consecutive MPD injections, there was a washout period of 4 days, where no injections were given. Then, a rechallenge injection of MPD was given. Behavioral responses after repeated MPD were compared to those after acute MPD to assess behavioral sensitization. Expression of sensitization to MPD was not prevented by 6-OHDA infusion into the NAc. Moreover, two distinct responses were seen to the acute injection of MPD: one group of rats had essentially no response to acute MPD, while the other had an augmented (‘sensitized’-like) acute response. Among rats with 6-OHDA infusions, the animals with diminished acute response to MPD had intact behavioral sensitization to repeated MPD, while the animals with increased acute response to MPD did not exhibit further sensitization to it. This suggests that the acute and chronic effects of MPD have distinct underlying neural circuitries.
Resumo:
BACKGROUND Bodily sensations are an important component of corporeal awareness. Spinal cord injury can leave affected body parts insentient and unmoving, leading to specific disturbances in the mental representation of one's own body and the sense of self. OBJECTIVE Here, we explored how illusions induced by multisensory stimulation influence immediate sensory signals and tactile awareness in patients with spinal cord injuries. METHODS The rubber hand illusion paradigm was applied to 2 patients with chronic and complete spinal cord injury of the sixth cervical spine, with severe somatosensory impairments in 2 of 5 fingers. RESULTS Both patients experienced a strong illusion of ownership of the rubber hand during synchronous, but not asynchronous, stroking. They also, spontaneously reported basic tactile sensations in their previously numb fingers. Tactile awareness from seeing the rubber hand was enhanced by progressively increasing the stimulation duration. CONCLUSIONS Multisensory illusions directly and specifically modulate the reemergence of sensory memories and enhance tactile sensation, despite (or as a result of) prior deafferentation. When sensory inputs are lost, and are later illusorily regained, the brain updates a coherent body image even several years after the body has become permanently unable to feel. This particular example of neural plasticity represents a significant opportunity to strengthen the sense of the self and the feelings of embodiment in patients with spinal cord injury.
Resumo:
Spinal cord injury (SCI) is a devastating condition that affects people in the prime of their lives. A myriad of vascular events occur after SCI, each of which contributes to the evolving pathology. The primary trauma causes mechanical damage to blood vessels, resulting in hemorrhage. The blood-spinal cord barrier (BSCB), a neurovascular unit that limits passage of most agents from systemic circulation to the central nervous system, breaks down, resulting in inflammation, scar formation, and other sequelae. Protracted BSCB disruption may exacerbate cellular injury and hinder neurobehavioral recovery in SCI. In these studies, angiopoietin-1 (Ang1), an agent known to reduce vascular permeability, was hypothesized to attenuate the severity of secondary injuries of SCI. Using longitudinal magnetic resonance imaging (MRI) studies (dynamic contrast-enhanced [DCE]-MRI for quantification of BSCB permeability, highresolution anatomical MRI for calculation of lesion size, and diffusion tensor imaging for assessment of axonal integrity), the acute, subacute, and chronic effects of Ang1 administration after SCI were evaluated. Neurobehavioral assessments were also performed. These non-invasive techniques have applicability to the monitoring of therapies in patients with SCI. In the acute phase of injury, Ang1 was found to reduce BSCB permeability and improve neuromotor recovery. Dynamic contrast-enhanced MRI revealed a persistent compromise of the BSCB up to two months post-injury. In the subacute phase of injury, Ang1’s effect on reducing BSCB permeability was maintained and it was found to transiently reduce axonal integrity. The SCI lesion burden was assessed with an objective method that compared favorably with segmentations from human raters. In the chronic phase of injury, Ang1 resulted in maintained reduction in BSCB permeability, a decrease in lesion size, and improved axonal integrity. Finally, longitudinal correlations among data from the MRI modalities and neurobehavioral assays were evaluated. Locomotor recovery was negatively correlated with lesion size in the Ang1 cohort and positively correlated with diffusion measures in the vehicle cohort. In summary, the results demonstrate a possible role for Ang1 in mitigating the secondary pathologies of SCI during the acute and chronic phases of injury.
Resumo:
There is a high incidence of infertility in males following traumatic spinal cord injury (SCI). Quality of semen is frequently poor in these patients, but the pathophysiological mechanism(s) causing this are not known. Blood-testis barrier (BTB) integrity following SCI has not previously been examined. The objective of this study was to characterize the effects of spinal contusion injury on the BTB in the rat. 63 adult, male Sprague Dawley rats received SCI (n = 28), laminectomy only (n = 7) or served as uninjured, age-matched controls (n = 28). Using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), BTB permeability to the vascular contrast agent gadopentate dimeglumine (Gd) was assessed at either 72 hours-, or 10 months post-SCI. DCE-MRI data revealed that BTB permeability to Gd was greater than controls at both 72 h and 10 mo post-SCI. Histological evaluation of testis tissue showed increased BTB permeability to immunoglobulin G at both 72 hours- and 10 months post-SCI, compared to age-matched sham-operated and uninjured controls. Tight junctional integrity within the seminiferous epithelium was assessed; at 72 hours post-SCI, decreased expression of the tight junction protein occludin was observed. Presence of inflammation in the testes was also examined. High expression of the proinflammatory cytokine interleukin-1 beta was detected in testis tissue. CD68(+) immune cell infiltrate and mast cells were also detected within the seminiferous epithelium of both acute and chronic SCI groups but not in controls. In addition, extensive germ cell apoptosis was observed at 72 h post-SCI. Based on these results, we conclude that SCI is followed by compromised BTB integrity by as early as 72 hours post-injury in rats and is accompanied by a substantial immune response within the testis. Furthermore, our results indicate that the BTB remains compromised and testis immune cell infiltration persists for months after the initial injury.
Resumo:
Diffusion tensor imaging (DTI) and immunohistochemistry were performed in spinal cord injured rats to understand the basis for activation of multiple regions in the brain observed in functional magnetic resonance imaging (fMRI) studies. The measured fractional anisotropy (FA), a scalar measure of diffusion anisotropy, along the region encompassing corticospinal tracts (CST) indicates significant differences between control and injured groups in the 3 to 4 mm area posterior to bregma that correspond to internal capsule and cerebral peduncle. Additionally, DTI-based tractography in injured animals showed increased number of fibers that extend towards the cortex terminating in the regions that were activated in fMRI. Both the internal capsule and cerebral peduncle demonstrated an increase in GFAP-immunoreactivity compared to control animals. GAP-43 expression also indicates plasticity in the internal capsule. These studies suggest that the previously observed multiple regions of activation in spinal cord injury are, at least in part, due to the formation of new fibers.
Resumo:
Promotion of remyelination is an important therapeutic strategy to facilitate functional recovery after traumatic spinal cord injury (SCI). Transplantation of neural stem cells (NSCs) or oligodendrocyte precursor cells (OPCs) has been used to enhance remyelination after SCI. However, the microenvironment in the injured spinal cord is inhibitory for oligodendrocyte (OL) differentiation of NSCs or OPCs. Identifying the signaling pathways that inhibit OL differentiation in the injured spinal cord could lead to new therapeutic strategies to enhance remyelination and functional recovery after SCI. In the present study, we show that reactive astrocytes from the injured rat spinal cord or their conditioned media inhibit OL differentiation of adult OPCs with concurrent promotion of astrocyte differentiation. The expression of bone morphogenetic proteins (BMP) is dramatically increased in the reactive astrocytes and their conditioned media. Importantly, blocking BMP activity by BMP receptor antagonist, noggin, reverse the effects of active astrocytes on OPC differentiation by increasing the differentiation of OL from OPCs while decreasing the generation of astrocytes. These data indicate that the upregulated bone morphogenetic proteins in the reactive astrocytes are major factors to inhibit OL differentiation of OPCs and to promote its astrocyte differentiation. These data suggest that manipulation of BMP signaling in the endogenous or grafted NSCs or OPCs may be a useful therapeutic strategy to increase their OL differentiation and remyelination and enhance functional recovery after SCI.
Resumo:
BACKGROUND: The recreational use of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) among adolescents and young adults has become increasingly prevalent in recent years. While evidence suggests that the long-term consequences of MDMA use include neurodegeneration to serotonergic and, possibly, dopaminergic pathways, little is known about susceptibility, such as behavioral sensitization, to MDMA. METHODS: The objectives of this study were to examine the dose-response characteristics of acute and chronic MDMA administration in rats and to determine whether MDMA elicits behavioral sensitization and whether it cross-sensitizes with amphetamine and methylphenidate. Adult male Sprague-Dawley rats were randomly divided into three MDMA dosage groups (2.5 mg/kg, 5.0 mg/kg, and 10.0 mg/kg) and a saline control group (N = 9/group). All three MDMA groups were treated for six consecutive days, followed by a 5-day washout, and subsequently re-challenged with their respective doses of MDMA (day 13). Rats were then given an additional 25-day washout period, and re-challenged (day 38) with similar MDMA doses as before followed by either 0.6 mg/kg amphetamine or 2.5 mg/kg methylphenidate on the next day (day 39). Open-field locomotor activity was recorded using a computerized automated activity monitoring system. RESULTS: Acute injection of 2.5 mg/kg MDMA showed no significant difference in locomotor activity from rats given saline (control group), while animals receiving acute 5.0 mg/kg or 10.0 mg/kg MDMA showed significant increases in locomotor activity. Rats treated chronically with 5.0 mg/kg and 10.0 mg/kg MDMA doses exhibited an augmented response, i.e., behavioral sensitization, on experimental day 13 in at least one locomotor index. On experimental day 38, all three MDMA groups demonstrated sensitization to MDMA in at least one locomotor index. Amphetamine and methylphenidate administration to MDMA-sensitized animals did not elicit any significant change in locomotor activity compared to control animals. CONCLUSION: MDMA sensitized to its own locomotor activating effects but did not elicit any cross-sensitization with amphetamine or methylphenidate.
Resumo:
The electrophysiological properties of acute and chronic methylphenidate (MPD) on neurons of the prefrontal cortex (PFC) and caudate nucleus (CN) have not been studied in awake, freely behaving animals. The present study was designed to investigate the dose-response effects of MPD on sensory evoked potentials recorded from the PFC and CN in freely behaving rats previously implanted with permanent electrodes, as well as their behavioral (locomotor) activities. On experimental day 1, locomotor behavior of rats was recorded for 2 h post-saline injection, and sensory evoked field potentials were recorded before and after saline and 0.6, 2.5, and 10 mg/kg, i.p., MPD administration. Animals were injected for the next five days with daily 2.5 mg/kg MPD to elicit behavioral sensitization. Locomotor recording was resumed on experimental days 2 and 6 after the MPD maintenance dose followed by 3 days of washout. On experimental day 10, rats were connected again to the electrophysiological recording system and rechallenged with saline and the identical MPD doses as on experimental day 1. On experimental day 11, rat's locomotor recording was resumed before and after 2.5 mg/kg MPD administration. Behavioral results showed that repeated administration of MPD induced behavioral sensitization. Challenge doses (0.6, 2.5, and 10.0 mg/kg) of MPD on experimental day 1 elicited dose-response attenuation in the response amplitude of the average sensory evoked field potential components recorded from the PFC and CN. Chronic MPD administration resulted in attenuation of the PFC's baseline recorded on experimental day 10, while the same treatment did not modulate the baseline recorded from the CN. Treatment of MPD on experimental day 10 resulted in further decrease of the average sensory evoked response compared to that obtained on experimental day 1. This observation of further decrease in the electrophysiological responses after chronic administration of MPD suggests that the sensory evoked responses on experimental day 10 represent neurophysiological sensitization. Moreover, two different response patterns were obtained from PFC and CN following chronic methylphenidate administration. In PFC, the baseline and effect of methylphenidate expressed electrophysiological sensitization on experimental day 10, while recording from CN did not exhibit any electrophysiological sensitization.
Resumo:
Mechanisms underlying chronic pain that develops after spinal cord injury (SCI) are incompletely understood. Most research on SCI pain mechanisms has focused on neuronal alterations within pain pathways at spinal and supraspinal levels associated with inflammation and glial activation. These events might also impact central processes of primary sensory neurons, triggering in nociceptors a hyperexcitable state and spontaneous activity (SA) that drive behavioral hypersensitivity and pain. SCI can sensitize peripheral fibers of nociceptors and promote peripheral SA, but whether these effects are driven by extrinsic alterations in surrounding tissue or are intrinsic to the nociceptor, and whether similar SA occurs in nociceptors in vivo are unknown. We show that small DRG neurons from rats (Rattus norvegicus) receiving thoracic spinal injury 3 d to 8 months earlier and recorded 1 d after dissociation exhibit an elevated incidence of SA coupled with soma hyperexcitability compared with untreated and sham-treated groups. SA incidence was greatest in lumbar DRG neurons (57%) and least in cervical neurons (28%), and failed to decline over 8 months. Many sampled SA neurons were capsaicin sensitive and/or bound the nociceptive marker, isolectin B4. This intrinsic SA state was correlated with increased behavioral responsiveness to mechanical and thermal stimulation of sites below and above the injury level. Recordings from C- and Aδ-fibers revealed SCI-induced SA generated in or near the somata of the neurons in vivo. SCI promotes the entry of primary nociceptors into a chronic hyperexcitable-SA state that may provide a useful therapeutic target in some forms of persistent pain.
Resumo:
Longitudinal in vivo proton magnetic resonance spectroscopy (1H-MRS) and immunohistochemistry were performed to investigate the tissue degeneration in traumatically injured rat spinal cord rostral and caudal to the lesion epicenter. On 1H-MRS significant decreases in N-acetyl aspartate (NAA) and total creatine (Cr) levels in the rostral, epicenter, and caudal segments were observed by 14 days, and levels remained depressed up to 56 days post-injury (PI). In contrast, the total choline (Cho) levels increased significantly in all three segments by 14 days PI, but recovered in the epicenter and caudal, but not the rostral region, at 56 days PI. Immunohistochemistry demonstrated neuronal cell death in the gray matter, and reactive astrocytes and axonal degeneration in the dorsal, lateral, and ventral white-matter columns. These results suggest delayed tissue degeneration in regions both rostrally and caudally from the epicenter in the injured spinal cord tissue. A rostral-caudal asymmetry in tissue recovery was seen both on MRI-observed hyperintense lesion volume and the Cho, but not NAA and Cr, levels at 56 days PI. These studies suggest that dynamic metabolic changes take place in regions away from the epicenter in injured spinal cord.
Resumo:
Vascular endothelial growth factor (VEGF) is being investigated as a potential interventional therapy for spinal cord injury (SCI). In the current study, we examined SCI-induced changes in VEGF protein levels using Western blot analysis around the epicenter of injury. Our results indicate a significant decrease in the levels of VEGF(165) and other VEGF isoforms at the lesion epicenter 1 day after injury, which was maintained up to 1 month after injury. We also examined if robust VEGF(165) decrease in injured spinal cords affects neuronal survival, given that a number of reported studies show neuroprotective effect of this VEGF isoform. However, exogenously administered VEGF(165) at the time of injury did not affect the number of sparred neurons. In contrast, exogenous administration of VEGF antibody that inhibits actions of not only VEGF(165) but also of several other VEGF isoforms, significantly decreased number of sparred neurons after SCI. Together these results indicate a general reduction of VEGF isoforms following SCI and that isoforms other than VEGF(165) (e.g., VEGF(121) and/or VEGF(189)) provide neuroprotection, suggesting that VEGF(165) isoform is likely involved in other pathophysiological process after SCI.