867 resultados para speaker clustering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a novel demand response model using a fuzzy subtractive cluster approach. The model development provides support to domestic consumer decisions on controllable loads management, considering consumers' consumption needs and the appropriate load shape or rescheduling in order to achieve possible economic benefits. The model based on fuzzy subtractive clustering method considers clusters of domestic consumption covering an adequate consumption range. Analysis of different scenarios is presented considering available electric power and electric energy prices. Simulation results are presented and conclusions of the proposed demand response model are discussed. (C) 2016 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Post inhibitory rebound is a nonlinear phenomenon present in a variety of nerve cells. Following a period of hyper-polarization this effect allows a neuron to fire a spike or packet of spikes before returning to rest. It is an important mechanism underlying central pattern generation for heartbeat, swimming and other motor patterns in many neuronal systems. In this paper we consider how networks of neurons, which do not intrinsically oscillate, may make use of inhibitory synaptic connections to generate large scale coherent rhythms in the form of cluster states. We distinguish between two cases i) where the rebound mechanism is due to anode break excitation and ii) where rebound is due to a slow T-type calcium current. In the former case we use a geometric analysis of a McKean type model to obtain expressions for the number of clusters in terms of the speed and strength of synaptic coupling. Results are found to be in good qualitative agreement with numerical simulations of the more detailed Hodgkin-Huxley model. In the second case we consider a particular firing rate model of a neuron with a slow calcium current that admits to an exact analysis. Once again existence regions for cluster states are explicitly calculated. Both mechanisms are shown to prefer globally synchronous states for slow synapses as long as the strength of coupling is sufficiently large. With a decrease in the duration of synaptic inhibition both systems are found to break into clusters. A major difference between the two mechanisms for cluster generation is that anode break excitation can support clusters with several groups, whilst slow T-type calcium currents predominantly give rise to clusters of just two (anti-synchronous) populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rigid adherence to pre-specified thresholds and static graphical representations can lead to incorrect decisions on merging of clusters. As an alternative to existing automated or semi-automated methods, we developed a visual analytics approach for performing hierarchical clustering analysis of short time-series gene expression data. Dynamic sliders control parameters such as the similarity threshold at which clusters are merged and the level of relative intra-cluster distinctiveness, which can be used to identify "weak-edges" within clusters. An expert user can drill down to further explore the dendrogram and detect nested clusters and outliers. This is done by using the sliders and by pointing and clicking on the representation to cut the branches of the tree in multiple-heights. A prototype of this tool has been developed in collaboration with a small group of biologists for analysing their own datasets. Initial feedback on the tool has been positive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication/interaction and by unusual repetitive and restricted behaviors and interests. ASD often co-occurs in the same families with other neuropsychiatric diseases (NPD), such as intellectual disability, schizophrenia, epilepsy, depression and attention deficit hyperactivity disorder. Genetic factors have an important role in ASD etiology. Multiple copy number variants (CNVs) and single nucleotide variants (SNVs) in candidate genes have been associated with an increased risk to develop ASD. Nevertheless, recent heritability estimates and the high genotypic and phenotypic heterogeneity characteristic of ASD indicate a role of environmental and epigenetic factors, such as long noncoding RNA (lncRNA) and microRNA (miRNA), as modulators of genetic expression and further clinical presentation. Both miRNA and lncRNA are functional RNA molecules that are transcribed from DNA but not translated into proteins, instead they act as powerful regulators of gene expression. While miRNA are small noncoding RNAs with 22-25 nucleotides in length that act at the post-transcriptional level of gene expression, the lncRNA are bigger molecules (>200 nucleotides in length) that are capped, spliced, and polyadenylated, similar to messenger RNA. Although few lncRNA were well characterized until date, there is a great evidence that they are implicated in several levels of gene expression (transcription/post-transcription/post-translation, organization of protein complexes, cell– cell signaling as well as recombination) as shown in figure 1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forensic speaker comparison exams have complex characteristics, demanding a long time for manual analysis. A method for automatic recognition of vowels, providing feature extraction for acoustic analysis is proposed, aiming to contribute as a support tool in these exams. The proposal is based in formant measurements by LPC (Linear Predictive Coding), selectively by fundamental frequency detection, zero crossing rate, bandwidth and continuity, with the clustering being done by the k-means method. Experiments using samples from three different databases have shown promising results, in which the regions corresponding to five of the Brasilian Portuguese vowels were successfully located, providing visualization of a speaker’s vocal tract behavior, as well as the detection of segments corresponding to target vowels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2014 Cises This work is distributed with License Creative Commons Attribution-Non commercial-No derivatives 4.0 International (CC BY-BC-ND 4.0)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phonation distortion leaves relevant marks in a speaker's biometric profile. Dysphonic voice production may be used for biometrical speaker characterization. In the present paper phonation features derived from the glottal source (GS) parameterization, after vocal tract inversion, is proposed for dysphonic voice characterization in Speaker Verification tasks. The glottal source derived parameters are matched in a forensic evaluation framework defining a distance-based metric specification. The phonation segments used in the study are derived from fillers, long vowels, and other phonation segments produced in spontaneous telephone conversations. Phonated segments from a telephonic database of 100 male Spanish native speakers are combined in a 10-fold cross-validation task to produce the set of quality measurements outlined in the paper. Shimmer, mucosal wave correlate, vocal fold cover biomechanical parameter unbalance and a subset of the GS cepstral profile produce accuracy rates as high as 99.57 for a wide threshold interval (62.08-75.04%). An Equal Error Rate of 0.64 % can be granted. The proposed metric framework is shown to behave more fairly than classical likelihood ratios in supporting the hypothesis of the defense vs that of the prosecution, thus ofering a more reliable evaluation scoring. Possible applications are Speaker Verification and Dysphonic Voice Grading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we present a mathematical formulation of the interaction between microorganisms such as bacteria or amoebae and chemicals, often produced by the organisms themselves. This interaction is called chemotaxis and leads to cellular aggregation. We derive some models to describe chemotaxis. The first is the pioneristic Keller-Segel parabolic-parabolic model and it is derived by two different frameworks: a macroscopic perspective and a microscopic perspective, in which we start with a stochastic differential equation and we perform a mean-field approximation. This parabolic model may be generalized by the introduction of a degenerate diffusion parameter, which depends on the density itself via a power law. Then we derive a model for chemotaxis based on Cattaneo's law of heat propagation with finite speed, which is a hyperbolic model. The last model proposed here is a hydrodynamic model, which takes into account the inertia of the system by a friction force. In the limit of strong friction, the model reduces to the parabolic model, whereas in the limit of weak friction, we recover a hyperbolic model. Finally, we analyze the instability condition, which is the condition that leads to aggregation, and we describe the different kinds of aggregates we may obtain: the parabolic models lead to clusters or peaks whereas the hyperbolic models lead to the formation of network patterns or filaments. Moreover, we discuss the analogy between bacterial colonies and self gravitating systems by comparing the chemotactic collapse and the gravitational collapse (Jeans instability).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disorder which may result from repetitive brain injury. A variety of tau-immunoreactive pathologies are present, including neurofibrillary tangles (NFT), neuropil threads (NT), dot-like grains (DLG), astrocytic tangles (AT), and occasional neuritic plaques (NP). In tauopathies, cellular inclusions in the cortex are clustered within specific laminae, the clusters being regularly distributed parallel to the pia mater. To determine whether a similar spatial pattern is present in CTE, clustering of the tau-immunoreactive pathology was studied in the cortex, hippocampus, and dentate gyrus in 11 cases of CTE and 7 cases of Alzheimer’s disease neuropathologic change (ADNC) without CTE. In CTE: (1) all aspects of tau-immunoreactive pathology were clustered and the clusters were frequently regularly distributed parallel to the tissue boundary, (2) clustering was similar in two CTE cases with minimal co-pathology compared with cases with associated ADNC or TDP-43 proteinopathy, (3) in a proportion of cortical gyri, estimated cluster size was similar to that of cell columns of the cortico-cortical pathways, and (4) clusters of the tau-immunoreactive pathology were infrequently spatially correlated with blood vessels. The NFT and NP in ADNC without CTE were less frequently randomly or uniformly distributed and more frequently in defined clusters than in CTE. Hence, the spatial pattern of the tau-immunoreactive pathology observed in CTE is typical of the tauopathies but with some distinct differences compared to ADNC alone. The spread of pathogenic tau along anatomical pathways could be a factor in the pathogenesis of the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The K-means algorithm is one of the most popular clustering algorithms in current use as it is relatively fast yet simple to understand and deploy in practice. Nevertheless, its use entails certain restrictive assumptions about the data, the negative consequences of which are not always immediately apparent, as we demonstrate. While more flexible algorithms have been developed, their widespread use has been hindered by their computational and technical complexity. Motivated by these considerations, we present a flexible alternative to K-means that relaxes most of the assumptions, whilst remaining almost as fast and simple. This novel algorithm which we call MAP-DP (maximum a-posteriori Dirichlet process mixtures), is statistically rigorous as it is based on nonparametric Bayesian Dirichlet process mixture modeling. This approach allows us to overcome most of the limitations imposed by K-means. The number of clusters K is estimated from the data instead of being fixed a-priori as in K-means. In addition, while K-means is restricted to continuous data, the MAP-DP framework can be applied to many kinds of data, for example, binary, count or ordinal data. Also, it can efficiently separate outliers from the data. This additional flexibility does not incur a significant computational overhead compared to K-means with MAP-DP convergence typically achieved in the order of seconds for many practical problems. Finally, in contrast to K-means, since the algorithm is based on an underlying statistical model, the MAP-DP framework can deal with missing data and enables model testing such as cross validation in a principled way. We demonstrate the simplicity and effectiveness of this algorithm on the health informatics problem of clinical sub-typing in a cluster of diseases known as parkinsonism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Influenza A virus is an important human pathogen causative of yearly epidemics and occasional pandemics. The ability to replicate within the host cell is a determinant of virulence, amplifying viral numbers for host-to-host transmission. This process requires multiple rounds of entering permissive cells, replication, and virion assembly at the plasma membrane, the site of viral budding and release. The assembly of influenza A virus involves packaging of several viral (and host) proteins and of a segmented genome, composed of 8 distinct RNAs in the form of viral ribonucleoproteins (vRNPs). The selective assembly of the 8-segment core remains one of the most interesting unresolved problems in virology. The recycling endosome regulatory GTPase Rab11 was shown to contribute to the process, by transporting vRNPs to the periphery, giving rise to enlarged cytosolic puncta rich in Rab11 and the 8 vRNPs. We recently reported that vRNP hotspots were formed of clustered vesicles harbouring protruding electron-dense structures that resembled vRNPs. Mechanistically, vRNP hotspots were formed as vRNPs outcompeted the cognate effectors of Rab11, the Rab11-Family-Interacting-Proteins (FIPs) for binding, and as a consequence impair recycling sorting at an unknown step. Here, we speculate on the impact that such impairment might have in host immunity, membrane architecture and viral assembly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research regarding the use of social media among travelers has mainly focused on its impact on travelers’ travel planning process and there is consensus that travel decisions are highly influenced by social media. Yet, little attention has been paid to the differences among travelers regarding their use of social media for travel purposes. Based on the use of travel social media, cluster analysis was employed to identify different segments among travelers. Furthermore, the study profiles the clusters based on demographic and other travel related characteristics. The findings of this study are important to online marketers to better understand traveler’s use of social media and their characteristics, in order to adapt online marketing strategies according to the profile of each segment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research regarding the use of social media among travelers has mainly focused on its impact on travelers’ travel planning process and there is consensus that travel decisions are highly influenced by social media. Yet, little attention has been paid to the differences among travelers regarding their use of social media for travel purposes. Based on the use of travel social media, cluster analysis was employed to identify different segments among travelers. Furthermore, the study profiles the clusters based on demographic and other travel related characteristics. The findings of this study are important to online marketers to better understand traveler’s use of social media and their characteristics, in order to adapt online marketing strategies according to the profile of each segment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diese Studie untersucht Gruppen von Ortsnamen in Deutschland (in den Postleitregionen) nach vorhandenen Ähnlichkeiten. Als Messgröße wird ein Häufigkeitsvektor von Trigrammen in jeder Gruppe herangezogen. Mit der Anwendung des Average Linkage-Algorithmus auf die Messgröße werden Cluster aus räumlich zusammenhängenden Gebieten gebildet, obwohl das Verfahren keine Kenntnis über die Lage der Cluster zueinander besitzt. In den Clustern werden die zehn häufigsten n-Gramme ermittelt, um charakteristische Wortpartikel darzustellen. Die von den Clustern umschriebenen Gebiete lassen sich zwanglos durch historische oder linguistische Entwicklungen erklären. Das hier verwendete Verfahren setzt jedoch kein linguistisches, geographisches oder historisches Wissen voraus, ermöglicht aber die Gruppierung von Namen in eindeutiger Weise unter Berücksichtigung einer Vielzahl von Wortpartikeln in einem Schritt. Die Vorgehensweise ohne Vorwissen unterscheidet diese Studie von den meisten bisher angewendeten Untersuchungen.