931 resultados para small-angle X-ray scattering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The polycrystalline powder of the cyclic tetramer based on bisphenol A and o-phthaloyldichloride has been prepared by recrystallization from nitrobenzene and its crystal structure has been determined by Wide-Angle X-ray Diffraction (WAXD). The unit cell is orthorhombic and its dimensions a = 0.967 6 nm, b = 0.869 9 nm, c = 2.085 9 nm, Space group belongs to Pmmm, With two tetramers per unit cell,the crystal density is 1.36 g . cm(-3), Indices of crystal diffraction peaks are also detailed in the present work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The polycrystalline powder of the cyclic tetramer ester based on bisphenol-A and o-phthaloyldichloride has been prepared by recrystallization from nitrobenzene and its crystal structure determined by wide-angle X-ray diffraction. The unit cell is orthorhombic and has dimensions a=0.967 nm, b=0.8699 nm, c = 2.0859 nm. With two tetramers per unit cell, the crystal density is 1.36 g cm(-3). Indices of crystal diffraction peaks are also detailed in the present work. Copyright (C) 1996 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructures of styrene-butadiene triblock (SBS) and styrene-butadiene four-arm star block (SB-4A) copolymers and their blends with homopolystyrene (PS) of different molecular weights, MPS, have been investigated by means of small-angle X-ray scatt

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radial distribution function of CaCl2-KCl (1:2 mol) melt was measured by X-ray scattering of high temperature liquid. The nearest neighbour distances of Ca2+-Cl-, K+-Cl- and Cl--Cl- ionic pairs are 0.278, 0.306 and 0.380 nm, respectively, Discussion on the relation between structure and physicochemical properties in the melt was simply done in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Greaves, George; Sen, S., (2007) 'Inorganic glasses, glass-forming liquids and amorphizing solids', Advances in Physics 56(1) pp.1-166 RAE2008

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The self-assembly into wormlike micelles of a poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymer Pluronic P84 in aqueous salt solution (2 M NaCl) has been studied by rheology, small-angle X-ray and neutron scattering (SAXS/SANS), and light scattering. Measurements of the flow curves by controlled stress rheometry indicated phase separation under flow. SAXS on solutions subjected to capillary flow showed alignment of micelles at intermediate shear rates, although loss of alignment was observed for high shear rates. For dilute solutions, SAXS and static light scattering data on unaligned samples could be superposed over three decades in scattering vector, providing unique information on the wormlike micelle structure over several length scales. SANS data provided information on even shorter length scales, in particular, concerning "blob" scattering from the micelle corona. The data could be modeled based on a system of semiflexible self-avoiding cylinders with a circular cross-section, as described by the wormlike chain model with excluded volume interactions. The micelle structure was compared at two temperatures close to the cloud point (47 degrees C). The micellar radius was found not to vary with temperature in this region, although the contour length increased with increasing temperature, whereas the Kuhn length decreased. These variations result in an increase of the low-concentration radius of gyration with increasing temperature. This was consistent with dynamic light scattering results, and, applying theoretical results from the literature, this is in agreement with an increase in endcap energy due to changes in hydration of the poly(ethylene oxide) blocks as the temperature is increased.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hierarchical ordering in a side group liquid crystal block copolymer is investigated by differential scanning calorimetry, polarized optical microscopy, small-angle X-ray and neutron scattering (SAXS and SANS) and transmission electron microscopy (TEM). A series of block copolymers with a range of compositions was prepared by atom transfer radical polymerization, comprising a polystyrene block and a poly(methyl methacrylate) block bearing chiral cholesteryl mesogens. Smectic ordering is observed as well as microphase separation of the block copolymer. Lamellar structures were observed for far larger volume fractions than for coil-coil copolymers (up to a volume fraction of liquid crystal block, f(LC) = 0.8). A sample with f(LC) = 0.86 exhibited a hexagonal-packed cylinder morphology, as confirmed by SAXS and TEM. The matrix comprised the liquid crystal block, with the mesogens forming smectic layers. For the liquid crystal homopolymer and samples with high f(LC), a smectic-smectic phase transition was observed below the clearing point. At low temperature, the smectic phase comprises coexisting domains with monolayer S-A,S-1 coexisting with interdigitated S-A,S-d domains. At high temperature a SA,1 phase is observed. This is the only structure observed for samples with lower f(LC). These unprecedented results point to the influence of block copolymer microphase separation on the smectic ordering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure and flow behaviour of binary mixtures of Pluronic block copolymers P85 and P123 is investigated by small-angle scattering, rheometry and mobility tests. Micelle dimensions are probed by dynamic light scattering. The micelle hydrodynamic radius for the 50/50 mixture is larger than that for either P85 or P123 alone, Clue to the formation of mixed micelles with a higher association number. The phase diagram for 50/50 mixtures contains regions Of Cubic and hexagonal phases similar to those for the parent homopolymers, however the region of stability of the cubic phase is enhanced at low temperature and concentrations above 40 wt%. This is ascribed to favourable packing of the mixed micelles containing core blocks with two different chain lengths, but similar corona chain lengths. The shear flow alignment of face-centred cubic and hexagonal phases is probed by in situ small-angle X-ray or neutron scattering with simultaneous rheology. The hexagonal phase can be aligned using steady shear in a Couette geometry, however the high modulus Cubic phase cannot be aligned well in this way. This requires the application of oscillatory shear or compression. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural characterization of subtilisin mesoscale clusters, which were previously shown to induce supramolecular order in biocatalytic self-assembly of Fmocdipeptides, was carried out by synchrotron small-angle X-ray, dynamic, and static light scattering measurements. Subtilisin molecules self-assemble to form supramolecular structures in phosphate buffer solutions. Structural arrangement of subtilisin clusters at 55 degrees Centigrade was found to vary systematically with increasing enzyme concentration. Static light scattering measurements showed the cluster structure to be consistent with a fractal-like arrangement, with fractal dimension varying from 1.8 to 2.6 with increasing concentration for low to moderate enzyme concentrations. This was followed by a structural transition around the enzyme concentration of 0.5 mg mL-1 to more compact structures with significantly slower relaxation dynamics, as evidenced by dynamic light scattering measurements. These concentration-dependent supramolecular enzyme clusters provide tunable templates for biocatalytic self-assembly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explore the influence of a rotating collector on the internal structure of poly(ε-caprolactone) fibres electrospun from a solution in dichloroethane. We find that above a threshold collector speed, the mean fibre diameter reduces as the speed increases and the fibres are further extended. Small-angle and wide-angle X-ray scattering techniques show a preferred orientation of the lamellar crystals normal to the fibre axis which increases with collector speed to a maximum and then reduces. We have separated out the processes of fibre alignment on the collector and the orientation of crystals within the fibres. There are several stages to this behaviour which correspond to the situations (a) where the collector speed is slower than the fibre spinning rate, (b) the fibre is mechanically extended by the rotating collector and (c) where the deformation leads to fibre fracture. The mechanical deformation leads to a development of preferred orientation with extension which is similar to the prediction of the pseudo-affine deformation model and suggests that the deformation takes place during the spinning process after the crystals have formed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel X-ray rheometer based on a parallel plate geometry is described. This system allows time-resolved X-ray scattering intensity data to be obtained from polymeric samples subjected to shear flow. The range of quantitative structural parameters, such as molecular orientation and inter chain correlations, which can be obtained from the data is highlighted. Examples of the utility of X-ray scattering in examining optically opaque samples and the extraction of 〈P2〉 and 〈P4〉 orientation parameters are given using anisotropic hydroxypropylcellulose solutions as the sample.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of global orientation and morphological features in linear polyethylene crystallizing from a sheared melt are studied using in-situ time-resolving wide angle X-ray scattering (WAXS) and ex-situ transmission electron microscopy. It is found that samples subjected to a shear rate above a critical value of ~1s-1 result in macroscopically oriented structures in the crystallized sample. This critical shear rate appears to be independent of the differences in molecular weight distribution of the samples studied although the morphologies which develop are sensitive to quite small differences in molecular weight distributions. The presence of shish kebabs in the morphology is shown to differ markedly according to variations in the upper molecular weight fraction of the molecular weight distribution, even though the resulting global orientation does not. The WAXS also reveals that areas which evidence no row nucleated structures still realize high degrees of molecular orientation. It is proposed that the formation of shish kebab or lamellar morphologies in these samples is dependent on the critical density of contiguous elongated crystallization nuclei rather than any specific global criteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report rotation of a single director in a nematic monodomain, acrylate based side-chain elastomer which was subjected to mechanical fields applied at angles in the range to the director, , present at the time of network formation. Time and spatially resolving wide angle X-ray scattering, together with polarised light microscopy measurements revealed a pronounced, almost discontinuous switching mode at a critical extension as the strain was applied at angles approaching to , whereas a more continuous rotation was seen when the strain was applied at more acute angles. This director reorientation was more or less uniform across the complete sample and was accompanied by a modest decrease in orientation parameter . At strains sufficient to induce switching there was some continuous distribution of director orientations with fluctuations of 10 although there was no evidence for any localised director inhomogenities such as domain formation. The observed deformation behaviour of these acrylate-based nematic monodomains was in accord with the predictions of a theory developed by Bladon et al., in that the complete set of data could be accounted for through a single parameter describing the chain anisotropy. The experimentally deduced chain anisotropy parameter was in broad agreement with that obtained from small-angle neutron scattering procedures, but was somewhat greater than that obtained by spontaneous shape changes at the nematic-isotropic transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray Rheology is an experimental technique which uses time-ressolved x-ray scattering as probe of the molecular level structural reorganisation which accompanies flow. It provides quantitative information on the direction alignment and on the level of global orientation. This information is very helpful in interpreting the classic rheological data on liquid crystal polymers. In this research we use data obtained from a cellulose derivate which exhibits a thermotropic liquid crystal phase. We show how increased shear rates lead to a rapid rise in the global orientation and we related this to therories of flow in liquid crystal polymers from the literature. We show that the relaxation time is independent of the prior shear rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aqueous dispersions of the anionic phospholipid dimyristoyl phosphatidylglycerol (DMPG) at pH above the apparent pK of DMPG and concentrations in the interval 70-300 mM have been investigated by small (SAXS) and wide-angle X-ray scattering, differential scanning calorimetry, and polarized optical microscopy. The order. disorder transition of the hydrocarbon chains occurs along an interval of about 10 degrees C (between T(m)(on) similar to 20 degrees C and T(m)(off) similar to 30 degrees C). Such melting regime was previously characterized at lower concentrations, up to 70 mM DMPG, when sample transparency was correlated with the presence of pores across the bilayer. At higher concentrations considered here, the melting regime persists but is not transparent. Defined SAXS peaks appear and a new lamellar phase L(p) with pores is proposed to exist above 70 mM DMPG, starting at similar to 23 degrees C (similar to 3 degrees C above T(m)(on)) and losing correlation after T(m)(off). A new model for describing the X-ray scattering of bilayers with pores, presented here, is able to explain the broad band attributed to in-plane correlation between pores. The majority of cell membranes have a net negative charge, and the opening of pores across the membrane tuned by ionic strength, temperature, and lipid composition is likely to have biological relevance.