823 resultados para single mode
Resumo:
A continuous Gaussian profile matched to the fundamental mode was etched onto the aperture of a vertical cavity surface emitting laser (VCSEL). Single Gaussian spot emission was achieved over the entire operating current range.
Resumo:
A new method has been used to design a power semiconductor device which combines IGBT switching and thyristor on-state characteristics. A single gate signal controls the switching and triggers the transitions between the IGBT and thyristor modes of operation. This paper discusses single-gated devices with multiple modes and aspects of their switching behaviour.
Resumo:
Mode-locked and single-longitudinal-mode waveguide lasers, manufactured by femtosecond laser writing in Er-Yb-doped phosphate glasses, are presented. Transform-limited 1.6-ps pulses and a cw output power exceeding 50 mW have been obtained in the two regimes. © 2007 Optical Society of America.
Resumo:
We report a 2 μm ultrafast solid-state Tm: Lu2O3 laser, mode-locked by single-layer graphene, generating transform-limited ∼ 410 fs pulses, with a spectral width ∼ 11.1 nm at 2067 nm. The maximum average output power is 270 mW, at a pulse repetition frequency of 110 MHz. This is a convenient high-power transform-limited ultrafast laser at 2 μm for various applications, such as laser surgery and material processing. © 2013 American Institute of Physics.
Resumo:
A widely tunable fiber ring laser, utilising a SWNT/polycarbonate film mode-locker and a 3-nm tunable filter, has been realized. 2.3ps pulse generation over 27nm spectral range is achieved for a constant pump power of 25mW. © 2007 Optical Society of America.
Resumo:
A widely tunable fiber ring laser, utilising a SWNT/polycarbonate film mode-locker and a 3-nm tunable filter, has been realized. 2.3ps pulse generation over 27nm spectral range is achieved for a constant pump power of 25mW. © 2008 Optical Society of America.
Resumo:
Mode-locked and single-longitudinal-mode waveguide lasers, manufactured by femtosecond laser writing in Er-Yb-doped phosphate glasses, are presented. Transform-limited 1.6-ps pulses and a cw output power exceeding 50 mW have been obtained in the two regimes. © 2007 Optical Society of America.
Resumo:
Single-fundamental-mode photonic crystal (PhC) vertical cavity surface emitting lasers (VCSEL) are produced and their single-fundamental-mode performances are investigated and demonstrated. A two-dimensional PhC with single-point-defect structure is fabricated using UV photolithography and inductive coupled plasma reactive ion etching on the surface of the VCSEL's top distributed Bragg-reflector. The PhC VCSEL maintains single-fundamental-mode operating with output power 1.7 mW and threshold current 2.5 mA. The full width half maximum of the lasing spectrum is less than 0.1 nm, the far field divergence angle is less than 10 degrees and the side mode suppression ratio is over 35 dB. The device characteristics are analyzed based on the effective index model of the photonic crystal fiber. The experimental results agree well with the theoretical expectation.
Resumo:
Using classical constant-pressure molecular dynamics simulations and the force constants model, radial breathing mode (RBM) transition of single-wall carbon nanotubes under hydrostatic pressure is reported. With the pressure increased, the RBM shifts linearly toward higher frequency, and the RBM transition occurs at the same critical pressure as the structural transition. The group theory indicates that the RBMs are all Raman-active; however, due to the effect of the frequency transition and the electronic structure change for tube radial deformation, the Raman intensity of the modes becomes so weak as not to be experimentally detected, which is in agreement with a recent experiment by S. Lebedkin [Phys. Rev. B 73, 094109 (2006)]. Furthermore, the calculated RBM transition pressure is well fitted to the cube of diameter (similar to 1/d(3)).