872 resultados para signal detection theory


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coccolithophores are the largest source of calcium carbonate in the oceans and are considered to play an important role in oceanic carbon cycles. Current methods to detect the presence of coccolithophore blooms from Earth observation data often produce high numbers of false positives in shelf seas and coastal zones due to the spectral similarity between coccolithophores and other suspended particulates. Current methods are therefore unable to characterise the bloom events in shelf seas and coastal zones, despite the importance of these phytoplankton in the global carbon cycle. A novel approach to detect the presence of coccolithophore blooms from Earth observation data is presented. The method builds upon previous optical work and uses a statistical framework to combine spectral, spatial and temporal information to produce maps of coccolithophore bloom extent. Validation and verification results for an area of the north east Atlantic are presented using an in situ database (N = 432) and all available SeaWiFS data for 2003 and 2004. Verification results show that the approach produces a temporal seasonal signal consistent with biological studies of these phytoplankton. Validation using the in situ coccolithophore cell count database shows a high correct recognition rate of 80% and a low false-positive rate of 0.14 (in comparison to 63% and 0.34 respectively for the established, purely spectral approach). To guide its broader use, a full sensitivity analysis for the algorithm parameters is presented.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A wineglass has been used as an acoustic resonator to enhance the photoacoustic signal generated by laser excitation of absorbing dyes in solution. The amplitude of the acoustic signal was recorded using a fiber-optic transducer based on a Fabry-Pérot cavity attached to the rim of the wineglass. The optical and acoustic properties of the setup were characterized, and it was used to quantify the concentration of phosphomolybdenum blue and methyl red solutions. Detection limits of 1.2 ppm and 8 muM were obtained, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A system for the identification of power quality violations is proposed. It is a two-stage system that employs the potentials of the wavelet transform and the adaptive neurofuzzy networks. For the first stage, the wavelet multiresolution signal analysis is exploited to denoise and then decompose the monitored signals of the power quality events to extract its detailed information. A new optimal feature-vector is suggested and adopted in learning the neurofuzzy classifier. Thus, the amount of needed training data is extensively reduced. A modified organisation map of the neurofuzzy classifier has significantly improved the diagnosis efficiency. Simulation results confirm the aptness and the capability of the proposed system in power quality violations detection and automatic diagnosis

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tailpipe emissions from automotive engines have been subject to steadily reducing legislative limits. This reduction has been achieved through the addition of sub-systems to the basic four-stroke engine which thereby increases its complexity. To ensure the entire system functions correctly, each system and / or sub-systems needs to be continuously monitored for the presence of any faults or malfunctions. This is a requirement detailed within the On-Board Diagnostic (OBD) legislation. To date, a physical model approach has been adopted by me automotive industry for the monitoring requirement of OBD legislation. However, this approach has restrictions from the available knowledge base and computational load required. A neural network technique incorporating Multivariant Statistical Process Control (MSPC) has been proposed as an alternative method of building interrelationships between the measured variables and monitoring the correct operation of the engine. Building upon earlier work for steady state fault detection, this paper details the use of non-linear models based on an Auto-associate Neural Network (ANN) for fault detection under transient engine operation. The theory and use of the technique is shown in this paper with the application to the detection of air leaks within the inlet manifold system of a modern gasoline engine whilst operated on a pseudo-drive cycle. Copyright © 2007 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the application of multivariate regression techniques to the Tennessee Eastman benchmark process for modelling and fault detection. Two methods are applied : linear partial least squares, and a nonlinear variant of this procedure using a radial basis function inner relation. The performance of the RBF networks is enhanced through the use of a recently developed training algorithm which uses quasi-Newton optimization to ensure an efficient and parsimonious network; details of this algorithm can be found in this paper. The PLS and PLS/RBF methods are then used to create on-line inferential models of delayed process measurements. As these measurements relate to the final product composition, these models suggest that on-line statistical quality control analysis should be possible for this plant. The generation of `soft sensors' for these measurements has the further effect of introducing a redundant element into the system, redundancy which can then be used to generate a fault detection and isolation scheme for these sensors. This is achieved by arranging the sensors and models in a manner comparable to the dedicated estimator scheme of Clarke et al. 1975, IEEE Trans. Pero. Elect. Sys., AES-14R, 465-473. The effectiveness of this scheme is demonstrated on a series of simulated sensor and process faults, with full detection and isolation shown to be possible for sensor malfunctions, and detection feasible in the case of process faults. Suggestions for enhancing the diagnostic capacity in the latter case are covered towards the end of the paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a multimodal detection and tracking algorithm for sensors composed of a camera mounted between two microphones. Target localization is performed on color-based change detection in the video modality and on time difference of arrival (TDOA) estimation between the two microphones in the audio modality. The TDOA is computed by multiband generalized cross correlation (GCC) analysis. The estimated directions of arrival are then postprocessed using a Riccati Kalman filter. The visual and audio estimates are finally integrated, at the likelihood level, into a particle filter (PF) that uses a zero-order motion model, and a weighted probabilistic data association (WPDA) scheme. We demonstrate that the Kalman filtering (KF) improves the accuracy of the audio source localization and that the WPDA helps to enhance the tracking performance of sensor fusion in reverberant scenarios. The combination of multiband GCC, KF, and WPDA within the particle filtering framework improves the performance of the algorithm in noisy scenarios. We also show how the proposed audiovisual tracker summarizes the observed scene by generating metadata that can be transmitted to other network nodes instead of transmitting the raw images and can be used for very low bit rate communication. Moreover, the generated metadata can also be used to detect and monitor events of interest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivation: Microarray experiments generate a high data volume. However, often due to financial or experimental considerations, e.g. lack of sample, there is little or no replication of the experiments or hybridizations. These factors combined with the intrinsic variability associated with the measurement of gene expression can result in an unsatisfactory detection rate of differential gene expression (DGE). Our motivation was to provide an easy to use measure of the success rate of DGE detection that could find routine use in the design of microarray experiments or in post-experiment assessment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors propose a three-node full diversity cooperative protocol, which allows the retransmission of all symbols. By allowing multiple nodes to transmit simultaneously, relaying transmission only consumes limited bandwidth resource. To facilitate the performance analysis of the proposed cooperative protocol, the lower and upper bounds of the outage probability are first developed, and then the high signal-to-noise ratio behaviour is studied. Our analytical results show that the proposed strategy can achieve full diversity. To achieve the performance gain promised by the cooperative diversity, at the relays decode-and-forward strategy is adopted and an iterative soft-interference-cancellation minimum mean-squared error equaliser is developed. The simulation results compare the bit-error-rate performance of the proposed protocol with the non-cooperative scheme and the scheme presented by Azarian et al. ( 2005).