963 resultados para shock oscillation
Resumo:
We examined whether experimental pneumococcal meningitis induced the 72-kd heat shock protein (HSP72), a sensitive marker of neuronal stress in other models of central nervous system (CNS) injury. Brain injury was characterized by vasculitis, cerebritis, and abscess formation in the cortex of infected animals. The extent of these changes correlated with the size of the inoculum (P less than 0.003) and with pathophysiologic parameters of disease severity, i.e., cerebrospinal fluid (CSF) lactate (r = 0.61, P less than 0.0001) and CSF glucose concentrations (r = -0.55, P less than 0.0001). Despite the presence of numerous cortical regions having morphologic evidence of injury, HSP72 was not detected in most animals. When present, only rare neurons were HSP72 positive. Western blot analysis of brain samples confirmed the paucity of HSP72 induction. The lack of neuronal HSP72 expression in this model suggests that at least some of the events leading to neuronal injury in meningitis are unique, when compared with CNS diseases associated with HSP72 induction.
Resumo:
PURPOSE OF REVIEW: This review will discuss the rationale and clinical utility of percutaneous left ventricular assist devices in the management of patients with cardiogenic shock. RECENT FINDINGS: Left ventricular assist devices maintain partial or total circulatory support in case of severe left ventricular failure. Currently, two percutaneous left ventricular assist devices are available for clinical use: the TandemHeart and the Impella Recover LP system. Compared with the intraaortic balloon pump, the TandemHeart has been shown to significantly reduce preload and to augment cardiac output. In a randomized comparison between the TandemHeart and intraaortic balloon pump support in patients with cardiogenic shock, the improved cardiac index afforded by the left ventricular assist device resulted in a more rapid decrease in serum lactate and improved renal function. There were, however, no significant differences with respect to 30-day mortality, and complications including limb ischemia and severe bleeding were more frequent with left ventricular assist devices than intraaortic balloon pump support. SUMMARY: The advent of percutaneous left ventricular assist devices constitutes an important advance in the management of patients with severe cardiogenic shock and may serve as bridge to recovery or heart transplantation in carefully selected patients. While improvement of hemodynamic parameters appears promising, it remains to be determined whether this benefit translates into improved clinical outcome.
Resumo:
Cardiogenic shock complicates up to 7% of ST-segment elevation myocardial infarctions and 2.5% of non-ST-segment elevation myocardial infarctions, with an associated mortality of 50% to 70%. Primary cardiac pump failure is followed by secondary vital organ hypoperfusion and subsequent activation of various cascade pathways, resulting in a downward spiral leading to multiple organ failure and, ultimately, death. Immediate restoration of cardiac output by means of percutaneous ventricular assist devices restores hemodynamic -stability and is an important advance in the management of patients with severe left ventricular dysfunction and cardiogenic shock. This article reviews available evidence supporting the use of percutaneous ventricular assist devices in patients suffering from cardiogenic shock.
Resumo:
PURPOSE OF REVIEW: To describe the effects of arginine vasopressin other than its vasoconstrictive and antidiuretic potential in vasodilatory shock. RECENT FINDINGS: Arginine vasopressin influences substrate metabolism by stimulation of hepatic glucose release, gluconeogenesis, ureogenesis and fatty acid esterification. Although arginine vasopressin is a secretagogue of different hormones, only prolactin increases during arginine vasopressin therapy. Plasmatic and cellular coagulation are affected by arginine vasopressin, resulting in thrombocyte aggregation. Therefore, platelet count typically decreases following arginine vasopressin infusion in critically ill patients. In addition, arginine vasopressin reduces bile flow and may increase bilirubin concentrations. Despite its potential to decrease serum sodium, no change in electrolytes was observed in critically ill patients receiving arginine vasopressin. Although arginine vasopressin is an endogenous antipyretic, body temperature is not decreased by central venous arginine vasopressin infusion. In addition, arginine vasopressin modulates immune function through V1 receptors. Compared with norepinephrine, arginine vasopressin may have protective effects on endothelial function. Net arginine vasopressin effects on gastrointestinal motility seem to be inhibitory and are dose dependent. SUMMARY: Except for its antidiuretic and vasoconstrictive actions, the effects of arginine vasopressin in patients with vasodilatory shock have so far only been partially examined. Potential influences of arginine vasopressin on metabolism and immune, liver and mitochondrial function remain to be assessed in future studies.
Resumo:
Implantable Cardioverter Defibrillator (ICD) implantation is the only established therapy for primary or secondary prevention of sudden cardiac death in patients with Hypertrophic Cardiomyopathy (HCM). Ineffectiveness of shock therapy for the termination of potentially fatal ventricular arrhythmias in ICD recipients is rare in the presence of appropriate arrhythmia detection by the device. We report the case of a 48-year-old woman with HCM and a single chamber ICD, who received five inefficient high-energy (35 Joules) shocks for the termination of an appropriately detected episode of Ventricular Tachycardia (VT). The episode was safely terminated with a subsequent application of Antitachycardia Pacing (ATP) by the device. At the following ICD control, an acceptable defibrillation threshold was detected.
Resumo:
Left ventricular assist devices were developed to support the function of a failing left ventricle. Owing to recent technological improvements, ventricular assist devices can be placed by percutaneous implantation techniques, which offer the advantage of fast implantation in the setting of acute left ventricular failure. This article reviews the growing evidence supporting the clinical use of left ventricular assist devices. Specifically, we discuss the use of left ventricular assist devices in patients with cardiogenic shock, in patients with acute ST-elevation myocardial infarction without shock, and during high-risk percutaneous coronary interventions.
Resumo:
Sialic-acid-binding immunoglobulin-like lectin (Siglec) 9 mediates death signals in neutrophils. The objective of this study was to determine the heterogeneity of neutrophil death responses in septic shock patients and to analyze whether these ex vivo data are related to the severity and outcome of septic shock. In this prospective cohort study, blood samples of patients with septic shock (n = 26) in a medical-surgical intensive care unit (ICU) were taken within 24 h of starting the treatment of septic shock (phase A), after circulatory stabilization (phase B), and 10 days after admission or at ICU discharge if earlier (phase C). Neutrophil death was quantified in the presence and absence of an agonistic anti-Siglec-9 antibody after 24 h ex vivo. In phase A, two distinct patterns of Siglec-9-mediated neutrophil death were observed: resistance to neutrophil death (n = 14; Siglec-9 nonresponders) and increased neutrophil death (n = 12; Siglec-9 responders) after Siglec-9 ligation compared with neutrophils from normal donors. Experiments using a pharmacological pan-caspase-inhibitor provided evidence for caspase-independent neutrophil death in Siglec-9 responders upon Siglec-9 ligation. There were no differences between Siglec-9 responders and nonresponders in length of ICU or hospital stay of survivors or severity of organ dysfunction. Taken together, septic shock patients exhibit different ex vivo death responses of blood neutrophils after Siglec-9 ligation early in shock. Both the resistance and the increased susceptibility to Siglec-9-mediated neutrophil death tend to normalize within 72 h after shock. Further studies are required to understand the role of Siglec-9-mediated neutrophil death in septic shock.
Resumo:
Moraxella catarrhalis, a major nasopharyngeal pathogen of the human respiratory tract, is exposed to rapid and prolonged downshifts of environmental temperature when humans breathe cold air. In the present study, we show that a 26 degrees C cold shock up-regulates the expression of UspA1, a major adhesin and putative virulence factor of M. catarrhalis, by prolonging messenger RNA half-life. Cold shock promotes M. catarrhalis adherence to upper respiratory tract cells via enhanced binding to fibronectin, an extracellular matrix component that mediates bacterial attachment. Exposure of M. catarrhalis to 26 degrees C increases the outer membrane protein-mediated release of the proinflammatory cytokine interleukin 8 in pharyngeal epithelial cells. Furthermore, cold shock at 26 degrees C enhances the binding of salivary immunoglobulin A on the surface of M. catarrhalis. These data indicate that cold shock at a physiologically relevant temperature of 26 degrees C affects the nasopharyngeal host-pathogen interaction and may contribute to M. catarrhalis virulence.
Resumo:
Due to its non-invasive character, the forced oscillation technique has gained importance in clinical research in infants and young children. Standardisation has enabled systematic and comparable measurements to be made in different laboratories throughout the world. The theoretical conditions are now fulfilled for use of these techniques in the clinical environment. This review discusses the principles, usefulness and pitfalls of various forced oscillation techniques in a research and clinical environment and the present and future clinical applications in children. It will focus particularly on the role of infant and preschool lung function as forced oscillation only requires minimal cooperation.