991 resultados para sequence-dependent drug effects
Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis.
Resumo:
RATIONALE: Lung injury leads to pulmonary inflammation and fibrosis through myeloid differentiation primary response gene 88 (MyD88) and the IL-1 receptor 1 (IL-1R1) signaling pathway. The molecular mechanisms by which lung injury triggers IL-1beta production, inflammation, and fibrosis remain poorly understood. OBJECTIVES: To determine if lung injury depends on the NALP3 inflammasome and if bleomycin (BLM)-induced lung injury triggers local production of uric acid, thereby activating the NALP3 inflammasome in the lung. Methods: Inflammation upon BLM administration was evaluated in vivo in inflammasome-deficient mice. Pulmonary uric acid accumulation, inflammation, and fibrosis were analyzed in mice treated with the inhibitor of uric acid synthesis or with uricase, which degrades uric acid. MEASUREMENTS AND MAIN RESULTS: Lung injury depends on the NALP3 inflammasome, which is triggered by uric acid locally produced in the lung upon BLM-induced DNA damage and degradation. Reduction of uric acid levels using the inhibitor of uric acid synthesis allopurinol or uricase leads to a decrease in BLM-induced IL-1beta production, lung inflammation, repair, and fibrosis. Local administration of exogenous uric acid crystals recapitulates lung inflammation and repair, which depend on the NALP3 inflammasome, MyD88, and IL-1R1 pathways and Toll-like receptor (TLR)2 and TLR4 for optimal inflammation but are independent of the IL-18 receptor. CONCLUSIONS: Uric acid released from injured cells constitutes a major endogenous danger signal that activates the NALP3 inflammasome, leading to IL-1beta production. Reducing uric acid tissue levels represents a novel therapeutic approach to control IL-1beta production and chronic inflammatory lung pathology.
Resumo:
Ubiquitin ligases play a pivotal role in substrate recognition and ubiquitin transfer, yet little is known about the regulation of their catalytic activity. Nedd4 (neural-precursor-cell-expressed, developmentally down-regulated 4)-2 is an E3 ubiquitin ligase composed of a C2 domain, four WW domains (protein-protein interaction domains containing two conserved tryptophan residues) that bind PY motifs (L/PPXY) and a ubiquitin ligase HECT (homologous with E6-associated protein C-terminus) domain. In the present paper we show that the WW domains of Nedd4-2 bind (weakly) to a PY motif (LPXY) located within its own HECT domain and inhibit auto-ubiquitination. Pulse-chase experiments demonstrated that mutation of the HECT PY-motif decreases the stability of Nedd4-2, suggesting that it is involved in stabilization of this E3 ligase. Interestingly, the HECT PY-motif mutation does not affect ubiquitination or down-regulation of a known Nedd4-2 substrate, ENaC (epithelial sodium channel). ENaC ubiquitination, in turn, appears to promote Nedd4-2 self-ubiquitination. These results support a model in which the inter- or intra-molecular WW-domain-HECT PY-motif interaction stabilizes Nedd4-2 by preventing self-ubiquitination. Substrate binding disrupts this interaction, allowing self-ubiquitination of Nedd4-2 and subsequent degradation, resulting in down-regulation of Nedd4-2 once it has ubiquitinated its target. These findings also point to a novel mechanism employed by a ubiquitin ligase to regulate itself differentially compared with substrate ubiquitination and stability.
Resumo:
Synthetic chemicals currently used in a variety of industrial and agricultural applications are leading to widespread contamination of the environment. Even though the intended uses of pesticides, plasticizers, antimicrobials, and flame retardants are beneficial, effects on human health are a global concern. These so-called endocrine-disrupting chemicals (EDCs) can disrupt hormonal balance and result in developmental and reproductive abnormalities. New in vitro, in vivo, and epidemiological studies link human EDC exposure with obesity, metabolic syndrome, and type 2 diabetes. Here we review the main chemical compounds that may contribute to metabolic disruption. We then present their demonstrated or suggested mechanisms of action with respect to nuclear receptor signaling. Finally, we discuss the difficulties of fairly assessing the risks linked to EDC exposure, including developmental exposure, problems of high- and low-dose exposure, and the complexity of current chemical environments.
Resumo:
The cytoskeleton, composed of actin filaments, intermediate filaments, and microtubules, is a highly dynamic supramolecular network actively involved in many essential biological mechanisms such as cellular structure, transport, movements, differentiation, and signaling. As a first step to characterize the biophysical changes associated with cytoskeleton functions, we have developed finite elements models of the organization of the cell that has allowed us to interpret atomic force microscopy (AFM) data at a higher resolution than that in previous work. Thus, by assuming that living cells behave mechanically as multilayered structures, we have been able to identify superficial and deep effects that could be related to actin and microtubule disassembly, respectively. In Cos-7 cells, actin destabilization with Cytochalasin D induced a decrease of the visco-elasticity close to the membrane surface, while destabilizing microtubules with Nocodazole produced a stiffness decrease only in deeper parts of the cell. In both cases, these effects were reversible. Cell softening was measurable with AFM at concentrations of the destabilizing agents that did not induce detectable effects on the cytoskeleton network when viewing the cells with fluorescent confocal microscopy. All experimental results could be simulated by our models. This technology opens the door to the study of the biophysical properties of signaling domains extending from the cell surface to deeper parts of the cell.
Resumo:
Prognosis of early breast cancer patients is significantly improved with the use of adjuvant therapies. Various guidelines have been proposed to select patients who will derive the most benefit from such treatments. However, classifications have limited usefulness in subsets of patients such as those with node negative breast cancer. The 2007 St. Paul de Vence Clinical Practice Recommendations proposed to consider adjuvant therapy in accordance with the 10-year relapse-free survival reduction estimated by Adjuvant! Online. However, many limitations remain regarding the use of Adjuvant! Online. Among them, adverse prognostic and/or predictive factors such as vascular invasion, mitotic activity, progesterone receptor negativity, and HER-2 expression are not incorporated in the routine clinical decision process. Our group has therefore issued guidelines based on the consideration of both Adjuvant! Online calculations and the prognostic and/or predictive effects of these markers. In addition, web-accessible comprehensive tables summarizing these recommendations are provided.
Resumo:
The MET pathway is dysregulated in many human cancers and promotes tumour growth, invasion and dissemination. Abnormalities in MET signalling have been reported to correlate with poor clinical outcomes and drug resistance in patients with cancer. Thus, MET has emerged as an attractive target for cancer therapy. Several MET inhibitors have been introduced into the clinic, and are currently in all phases of clinical trials. In general, initial results from these studies indicate only a modest benefit in unselected populations. In this Review, we discuss current challenges in developing MET inhibitors--including identification of predictive biomarkers--as well as the most-efficient ways to combine these drugs with other targeted agents or with classic chemotherapy or radiotherapy.
Resumo:
The epithelial sodium channel (ENaC) is preferentially assembled into heteromeric alphabetagamma complexes. The alpha and gamma (not beta) subunits undergo proteolytic cleavage by endogenous furin-like activity correlating with increased ENaC function. We identified full-length subunits and their fragments at the cell surface, as well as in the intracellular pool, for all homo- and heteromeric combinations (alpha, beta, gamma, alphabeta, alphagamma, betagamma, and alphabetagamma). We assayed corresponding channel function as amiloride-sensitive sodium transport (I(Na)). We varied furin-mediated proteolysis by mutating the P1 site in alpha and/or gamma subunit furin consensus cleavage sites (alpha(mut) and gamma(mut)). Our findings were as follows. (i) The beta subunit alone is not transported to the cell surface nor cleaved upon assembly with the alpha and/or gamma subunits. (ii) The alpha subunit alone (or in combination with beta and/or gamma) is efficiently transported to the cell surface; a surface-expressed 65-kDa alpha ENaC fragment is undetected in alpha(mut)betagamma, and I(Na) is decreased by 60%. (iii) The gamma subunit alone does not appear at the cell surface; gamma co-expressed with alpha reaches the surface but is not detectably cleaved; and gamma in alphabetagamma complexes appears mainly as a 76-kDa species in the surface pool. Although basal I(Na) of alphabetagamma(mut) was similar to alphabetagamma, gamma(mut) was not detectably cleaved at the cell surface. Thus, furin-mediated cleavage is not essential for participation of alpha and gamma in alphabetagamma heteromers. Basal I(Na) is reduced by preventing furin-mediated cleavage of the alpha, but not gamma, subunits. Residual current in the absence of furin-mediated proteolysis may be due to non-furin endogenous proteases.
Resumo:
We investigated whether mouse mammary tumor virus (MMTV) favors preactivated or naive B cells as targets for efficient infection. We have demonstrated previously that MMTV activates B cells upon infection. Here, we show that polyclonal activation of B cells leads instead to lower infection levels and attenuated superantigen-specific T-cell responses in vivo. This indicates that naive small resting B cells are the major targets of MMTV infection and that the activation induced by MMTV is sufficient to allow efficient infection.
Resumo:
OBJECTIVE: To investigate the association of renal impairment on functional outcome and complications in stroke patients treated with IV thrombolysis (IVT). METHODS: In this observational study, we compared the estimated glomerular filtration rate (GFR) with poor 3-month outcome (modified Rankin Scale scores 3-6), death, and symptomatic intracranial hemorrhage (sICH) based on the criteria of the European Cooperative Acute Stroke Study II trial. Unadjusted and adjusted odds ratios (ORs) with 95% confidence intervals (CIs) were calculated. Patients without IVT treatment served as a comparison group. RESULTS: Among 4,780 IVT-treated patients, 1,217 (25.5%) had a low GFR (<60 mL/min/1.73 m(2)). A GFR decrease by 10 mL/min/1.73 m(2) increased the risk of poor outcome (OR [95% CI]): (ORunadjusted 1.20 [1.17-1.24]; ORadjusted 1.05 [1.01-1.09]), death (ORunadjusted 1.33 [1.28-1.38]; ORadjusted 1.18 [1.11-1.249]), and sICH (ORunadjusted 1.15 [1.01-1.22]; ORadjusted 1.11 [1.04-1.20]). Low GFR was independently associated with poor 3-month outcome (ORadjusted 1.32 [1.10-1.58]), death (ORadjusted 1.73 [1.39-2.14]), and sICH (ORadjusted 1.64 [1.21-2.23]) compared with normal GFR (60-120 mL/min/1.73 m(2)). Low GFR (ORadjusted 1.64 [1.21-2.23]) and stroke severity (ORadjusted 1.05 [1.03-1.07]) independently determined sICH. Compared with patients who did not receive IVT, treatment with IVT in patients with low GFR was associated with poor outcome (ORadjusted 1.79 [1.41-2.25]), and with favorable outcome in those with normal GFR (ORadjusted 0.77 [0.63-0.94]). CONCLUSION: Renal function significantly modified outcome and complication rates in IVT-treated stroke patients. Lower GFR might be a better risk indicator for sICH than age. A decrease of GFR by 10 mL/min/1.73 m(2) seems to have a similar impact on the risk of death or sICH as a 1-point-higher NIH Stroke Scale score measuring stroke severity.
Resumo:
Effects of insulin upon glucose metabolism were investigated in chick embryos explanted in vitro during the first 30 h of incubation. Insulin stimulated the glucose consumption of the chick gastrula (18 h) and neurula (24 h), but had no effect on the late blastula (0 h:laying) and on the stage of six to eight somites (30 h). The increase in glucose consumption concerned both the embryonic area pellucida (AP) and extraembryonic area opaca (AO). AP responded to a greater extent (50%) and at a lower range of concentrations (0.1-1.0 ng/ml) than AO (30%; 1-100 ng/ml). Insulin had no effect on the oxygen consumption of blastoderms, whereas it stimulated the aerobic lactate production (approximately 70% of the additional glucose consumption was converted to lactate). The nanomolar range of stimulating concentrations suggests that insulin has a specific effect in the chick embryo, and that it could modulate glucose metabolism in ovo as well. The transient sensitivity of the embryo to insulin is discussed in relation to behavior of mesodermal cells.
Resumo:
BACKGROUND: Photodynamic therapy (PDT) at low drug-light conditions can enhance the transport of intravenously injected macromolecular therapeutics through the tumor vasculature. Here we determined the impact of PDT on the distribution of liposomal doxorubicin (Liporubicin™) administered by isolated lung perfusion (ILP) in sarcomas grown on rodent lungs. METHODS: A syngeneic methylcholanthrene-induced sarcoma cell line was implanted subpleurally in the left lung of Fischer rats. Treatment schemes consisted in ILP alone (400 μg of Liporubicin), low-dose (0.0625 mg/kg Visudyne®, 10 J/cm(2) and 35 mW/cm(2)) and high-dose left lung PDT (0.125 mg/kg Visudyne, 10 J/cm(2) and 35 mW/cm(2)) followed by ILP (400 μg of Liporubicin). The uptake and distribution of Liporubicin in tumor and lung tissues were determined by high-performance liquid chromatography and fluorescence microscopy in each group. RESULTS: Low-dose PDT significantly improved the distribution of Liporubicin in tumors compared to high-dose PDT (p < 0.05) and ILP alone (p < 0.05). However, both PDT pretreatments did not result in a higher overall drug uptake in tumors or a higher tumor-to-lung drug ratio compared to ILP alone. CONCLUSIONS: Intraoperative low-dose Visudyne-mediated PDT enhances liposomal doxorubicin distribution administered by ILP in sarcomas grown on rodent lungs which is predicted to improve tumor control by ILP.
Resumo:
Asthma is a chronic inflammatory disease of the airways that involves many cell types, amongst which mast cells are known to be important. Adenosine, a potent bronchoconstricting agent, exerts its ability to modulate adenosine receptors of mast cells thereby potentiating derived mediator release, histamine being one of the first mediators to be released. The heterogeneity of sources of mast cells and the lack of highly potent ligands selective for the different adenosine receptor subtypes have been important hurdles in this area of research. In the present study we describe compound C0036E08, a novel ligand that has high affinity (pK(i) 8.46) for adenosine A(2B) receptors, being 9 times, 1412 times and 3090 times more selective for A(2B) receptors than for A(1), A(2A) and A(3) receptors, respectively. Compound C0036E08 showed antagonist activity at recombinant and native adenosine receptors, and it was able to fully block NECA-induced histamine release in freshly isolated mast cells from human bronchoalveolar fluid. C0036E08 has been shown to be a valuable tool for the identification of adenosine A(2B) receptors as the adenosine receptors responsible for the NECA-induced response in human mast cells. Considering the increasing interest of A(2B) receptors as a therapeutic target in asthma, this chemical tool might provide a base for the development of new anti-asthmatic drugs.
Resumo:
Our aim was to critically evaluate the relations among smoking, body weight, body fat distribution, and insulin resistance as reported in the literature. In the short term, nicotine increases energy expenditure and could reduce appetite, which may explain why smokers tend to have lower body weight than do nonsmokers and why smoking cessation is frequently followed by weight gain. In contrast, heavy smokers tend to have greater body weight than do light smokers or nonsmokers, which likely reflects a clustering of risky behaviors (eg, low degree of physical activity, poor diet, and smoking) that is conducive to weight gain. Other factors, such as weight cycling, could also be involved. In addition, smoking increases insulin resistance and is associated with central fat accumulation. As a result, smoking increases the risk of metabolic syndrome and diabetes, and these factors increase risk of cardiovascular disease. In the context of the worldwide obesity epidemic and a high prevalence of smoking, the greater risk of (central) obesity and insulin resistance among smokers is a matter of major concern
Resumo:
BACKGROUND: A single infusion of intravenous zoledronic acid decreases bone turnover and improves bone density at 12 months in postmenopausal women with osteoporosis. We assessed the effects of annual infusions of zoledronic acid on fracture risk during a 3-year period. METHODS: In this double-blind, placebo-controlled trial, 3889 patients (mean age, 73 years) were randomly assigned to receive a single 15-minute infusion of zoledronic acid (5 mg) and 3876 were assigned to receive placebo at baseline, at 12 months, and at 24 months; the patients were followed until 36 months. Primary end points were new vertebral fracture (in patients not taking concomitant osteoporosis medications) and hip fracture (in all patients). Secondary end points included bone mineral density, bone turnover markers, and safety outcomes. RESULTS: Treatment with zoledronic acid reduced the risk of morphometric vertebral fracture by 70% during a 3-year period, as compared with placebo (3.3% in the zoledronic-acid group vs. 10.9% in the placebo group; relative risk, 0.30; 95% confidence interval [CI], 0.24 to 0.38) and reduced the risk of hip fracture by 41% (1.4% in the zoledronic-acid group vs. 2.5% in the placebo group; hazard ratio, 0.59; 95% CI, 0.42 to 0.83). Nonvertebral fractures, clinical fractures, and clinical vertebral fractures were reduced by 25%, 33%, and 77%, respectively (P<0.001 for all comparisons). Zoledronic acid was also associated with a significant improvement in bone mineral density and bone metabolism markers. Adverse events, including change in renal function, were similar in the two study groups. However, serious atrial fibrillation occurred more frequently in the zoledronic acid group (in 50 vs. 20 patients, P<0.001). CONCLUSIONS: A once-yearly infusion of zoledronic acid during a 3-year period significantly reduced the risk of vertebral, hip, and other fractures. (ClinicalTrials.gov number, NCT00049829.)