943 resultados para self-consistent calculation
Resumo:
Background Traffic offences have been considered an important predictor of crash involvement, and have often been used as a proxy safety variable for crashes. However the association between crashes and offences has never been meta-analysed and the population effect size never established. Research is yet to determine the extent to which this relationship may be spuriously inflated through systematic measurement error, with obvious implications for researchers endeavouring to accurately identify salient factors predictive of crashes. Methodology and Principal Findings Studies yielding a correlation between crashes and traffic offences were collated and a meta-analysis of 144 effects drawn from 99 road safety studies conducted. Potential impact of factors such as age, time period, crash and offence rates, crash severity and data type, sourced from either self-report surveys or archival records, were considered and discussed. After weighting for sample size, an average correlation of r = .18 was observed over the mean time period of 3.2 years. Evidence emerged suggesting the strength of this correlation is decreasing over time. Stronger correlations between crashes and offences were generally found in studies involving younger drivers. Consistent with common method variance effects, a within country analysis found stronger effect sizes in self-reported data even controlling for crash mean. Significance The effectiveness of traffic offences as a proxy for crashes may be limited. Inclusion of elements such as independently validated crash and offence histories or accurate measures of exposure to the road would facilitate a better understanding of the factors that influence crash involvement.
Resumo:
A first comprehensive investigation on the deflagration of ammonium perchlorate (AP) in the subcritical regime, below the low pressure deflagration limit (LPL, 2.03 MPa) christened as regime I$^{\prime}$, is discussed by using an elegant thermodynamic approach. In this regime, deflagration was effected by augmenting the initial temperature (T$_{0}$) of the AP strand and by adding fuels like aliphatic dicarboxylic acids or polymers like carboxy terminated polybutadiene (CTPB). From this thermodynamic model, considering the dependence of burning rate ($\dot{r}$) on pressure (P) and T$_{0}$, the true condensed (E$_{\text{s,c}}$) and gas phase (E$_{\text{s,g}}$) activation energies, just below and above the surface respectively, have been obtained and the data clearly distinguishes the deflagration mechanisms in regime I$^{\prime}$ and I (2.03-6.08 MPa). Substantial reduction in the E$_{\text{s,c}}$ of regime I$^{\prime}$, compared to that of regime I, is attributed to HClO$_{4}$ catalysed decomposition of AP. HClO$_{4}$ formation, which occurs only in regime I$^{\prime}$, promotes dent formation on the surface as revealed by the reflectance photomicrographs, in contrast to the smooth surface in regime I. The HClO$_{4}$ vapours, in regime I$^{\prime}$, also catalyse the gas phase reactions and thus bring down the E$_{\text{s,g}}$ too. The excess heat transferred on to the surface from the gas phase is used to melt AP and hence E$_{\text{s,c}}$, in regime I, corresponds to the melt AP decomposition. It is consistent with the similar variation observed for both the melt layer thickness and $\dot{r}$ as a function of P. Thermochemical calculations of the surface heat release support the thermodynamic model and reveal that the AP sublimation reduces the required critical exothermicity of 1108.8 kJ kg$^{-1}$ at the surface. It accounts for the AP not sustaining combustion in the subcritical regime I$^{\prime}$. Further support for the model comes from the temperature-time profiles of the combustion train of AP. The gas and condensed phase enthalpies, derived from the profile, give excellent agreement with those computed thermochemically. The $\sigma _{\text{p}}$ expressions derived from this model establish the mechanistic distinction of regime I$^{\prime}$ and I and thus lend support to the thermodynamic model. On comparing the deflagration of strand against powder AP, the proposed thermodynamic model correctly predicts that the total enthalpy of the condensed and gas phases remains unaltered. However, 16% of AP particles undergo buoyant lifting into the gas phase in the `free board region' (FBR) and this renders the demarcation of the true surface difficult. It is found that T$_{\text{s}}$ lies in the FBR and due to this, in regime I$^{\prime}$, the E$_{\text{s,c}}$ of powder AP matches with the E$_{\text{s,g}}$ of the pellet. The model was extended to AP/dicarboxylic acids and AP/CTPB mixture. The condensed ($\Delta $H$_{1}$) and gas phase ($\Delta $H$_{2}$) enthalpies were obtained from the temperature profile analyses which fit well with those computed thermochemically. The $\Delta $H$_{1}$ of the AP/succinic acid mixture was found just at the threshold of sustaining combustion. Indeed the lower homologue malonic acid, as predicted, does not sustain combustion. In vaporizable fuels like sebacic acid the E$_{\text{s,c}}$ in regime I$^{\prime}$, understandably, conforms to the AP decomposition. However, the E$_{\text{s,c}}$ in AP/CTPB system corresponds to the softening of the polymer which covers AP particles to promote extensive condensed phase reactions. The proposed thermodynamic model also satisfactorily explains certain unique features like intermittent, plateau and flameless combustion in AP/ polymeric fuel systems.
Resumo:
We propose a method for the dynamic simulation of a collection of self-propelled particles in a viscous Newtonian fluid. We restrict attention to particles whose size and velocity are small enough that the fluid motion is in the creeping flow regime. We propose a simple model for a self-propelled particle, and extended the Stokesian Dynamics method to conduct dynamic simulations of a collection of such particles. In our description, each particle is treated as a sphere with an orientation vector p, whose locomotion is driven by the action of a force dipole Sp of constant magnitude S0 at a point slightly displaced from its centre. To simplify the calculation, we place the dipole at the centre of the particle, and introduce a virtual propulsion force Fp to effect propulsion. The magnitude F0 of this force is proportional to S0. The directions of Sp and Fp are determined by p. In isolation, a self-propelled particle moves at a constant velocity u0 p, with the speed u0 determined by S0. When it coexists with many such particles, its hydrodynamic interaction with the other particles alters its velocity and, more importantly, its orientation. As a result, the motion of the particle is chaotic. Our simulations are not restricted to low particle concentration, as we implement the full hydrodynamic interactions between the particles, but we restrict the motion of particles to two dimensions to reduce computation. We have studied the statistical properties of a suspension of self-propelled particles for a range of the particle concentration, quantified by the area fraction φa. We find several interesting features in the microstructure and statistics. We find that particles tend to swim in clusters wherein they are in close proximity. Consequently, incorporating the finite size of the particles and the near-field hydrodynamic interactions is of the essence. There is a continuous process of breakage and formation of the clusters. We find that the distributions of particle velocity at low and high φa are qualitatively different; it is close to the normal distribution at high φa, in agreement with experimental measurements. The motion of the particles is diffusive at long time, and the self-diffusivity decreases with increasing φa. The pair correlation function shows a large anisotropic build-up near contact, which decays rapidly with separation. There is also an anisotropic orientation correlation near contact, which decays more slowly with separation. Movies are available with the online version of the paper.
Resumo:
A new family of supramolecular organogelators, based on chiral amino acid derivatives of 2,4,6-trichloro-pyrimidine-5-carbaldehyde, has been synthesized. L-alanine was incorporated as a spacer between the pyrimidine core and long hydrocarbon tails to compare the effect of chirality and hydrogen bonding to that of the achiral analogue. The role of aromatic moiety on the chiral spacer was also investigated by introducing L-phenyl alanine moieties. The presence of intermolecular hydrogen-bonding leading to the chiral self-assembly was probed by concentration-dependent FTIR and UV/Vis spectroscopies, in addition to circular dichroism (CD) studies. Temperature and concentration-dependent CD spectroscopy ascribed to the formation of -sheet-type H-bonded networks. The morphology and the arrangements of the molecules in the freeze-dried gels were examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) techniques. Calculation of the length of each molecular system by energy minimization in its extended conformation and comparison with the small-angle XRD pattern reveals that this class of gelator molecules adopts a lamellar organization. Polarized optical microscopy (POM) and differential scanning calorimetry (DSC) indicate that the solid state phase behavior of these molecules is totally dependent on the choice of their amino acid spacers. Structure-induced aggregation properties based on the H-bonding motifs and the packing of the molecule in three dimensions leading to gelation was elucidated by rheological studies. However, viscoelasticity was shown to depend only marginally on the H-bonding interactions; rather it depends on the packing of the gelators to a greater extent.
Resumo:
The flexibility of the water lattice in clathrate hydrates and guest-guest interactions has been shown in previous studies to significantly affect the values of the thermodynamic properties, such as chemical potentials and free energies. Here we describe methods for computing occupancies, chemical potentials, and free energies that account for the flexibility of water lattice and guest-guest interactions in the hydrate phase. The methods are validated for a wide variety of guest molecules, such as methane, ethane, carbon dioxide, and tetrahydrodfuran by comparing the predicted occupancy values of guest molecules with those obtained from isothermal isobaric semigrand Monte Carlo simulations. The proposed methods extend the van der Waals and Platteuw theory for clathrate hydrates, and the Langmuir constant is calculated based on the structure of the empty hydrate lattice. These methods in combination with development of advanced molecular models for water and guest molecules should lead to a more thermodynamically consistent theory for clathrate hydrates.
Resumo:
For an anti-plane problem, the differential operator is self-adjoint and the corresponding eigenfunctions belong to the Hilbert space. The orthogonal property between eigenfunctions (or between the derivatives of eigenfunctions) of anti-plane problem is exploited. We developed for the first time two sets of radius-independent orthogonal integrals for extraction of stress intensity factors (SIFs), so any order SIF can be extracted based on a certain known solution of displacement (an analytic result or a numerical result). Many numerical examples based on the finite element method of lines (FEMOL) show that the present method is very powerful and efficient.
Resumo:
Layered steam injection, widely used in Liaohe Oilfield at Present, is an effective recovery technique to heavy oil reserves. Which makes the steam front-peak push forward uniformly, the amount of steam injection be assigned rationally, and the effect of injection steam be obtained as expected. To maintain a fixed ratio of layered steam injection and solve the problem of nonadjustable hole diameter with the change of layer pressure in the existing injectors, a new method is proposed in this paper to design layered steam injectors based on the dynamic balance theory. According to gas-liquid two-phase flow theory and beat transfer theory, the energy equation and the heat conduction equation in boreholes are developed. By analyzing the energy equilibrium of water-steam passing through the injector hole, we find an expression to describe the relation between the cross-sectional area of injector hole and the layer pressure. With this expression, we provide a new set of calculation methods and write the corresponding computer program to design and calculate the main parameters of a steam injector. The actual measurement data show that the theoretically calculated results are accurate, the software runs reliably, and they provide the design of self-adjustable layered steam injectors with the theoretical foundation.
Resumo:
Layered steam injection, widely used in Liaohe Oilfield at present, is an effective recovery technique to heavy oil reserves. Which makes the steam front-peak push forward uniformly, the amount of steam injection be assigned rationally, and the effect of injection steam be obtained as expected. To maintain a fixed ratio of layered steam injection and solve the problem of nonadjustable hole diameter with the change of layer pressure in the existing injectors, a new method is proposed in this paper to design layered steam injectors based on the dynamic balance theory According to gas-liquid two-phase flow theory and heat transfer theory, the energy equation and the heat conduction equation in boreholes are developed. By analyzing the energy equilibrium of water-steam passing through the injector hole, we find an expression to describe the relation between the cross-sectional area of injector hole and the layer pressure. With this expression, we provide a new set of calculation methods and write the corresponding computer program to design and calculate the main parameters of a steam injector. The actual measurement data show that the theoretically calculated results are accurate, the software runs reliably, and they provide the design of self-adjustable layered steam injectors with the theoretical foundation.
Resumo:
In order to investigate the transient thermal stress field in wall-shape metal part during laser direct forming, a FEM model basing on ANSYS is established, and its algorithm is also dealt with. Calculation results show that while the wall-shape metal part is being deposited, in X direction, the thermal stress in the top layer of the wall-shape metal part is tensile stress and in the inner of the wall-shape metal part is compressive stress. The reason causing above-mentioned thermal stress status in the wall-shape metal part is illustrated, and the influence of the time and the processing parameters on the thermal stress field in wall-shape metal part is also studied. The calculation results are consistent with experimental results in tendency.
Resumo:
A series of experiments was conducted on the use of a device to passively generate vortex rings, henceforth a passive vortex generator (PVG). The device is intended as a means of propulsion for underwater vehicles, as the use of vortex rings has been shown to decrease the fuel consumption of a vehicle by up to 40% Ruiz (2010).
The PVG was constructed out of a collapsible tube encased in a rigid, airtight box. By adjusting the pressure within the airtight box while fluid was flowing through the tube, it was possible to create a pulsed jet with vortex rings via self-excited oscillations of the collapsible tube.
A study of PVG integration into an existing autonomous underwater vehicle (AUV) system was conducted. A small AUV was used to retrofit a PVG with limited alterations to the original vehicle. The PVG-integrated AUV was used for self-propelled testing to measure the hydrodynamic (Froude) efficiency of the system. The results show that the PVG-integrated AUV had a 22% increase in the Froude efficiency using a pulsed jet over a steady jet. The maximum increase in the Froude efficiency was realized when the formation time of the pulsed jet, a nondimensional time to characterize vortex ring formation, was coincident with vortex ring pinch-off. This is consistent with previous studies that indicate that the maximization of efficiency for a pulsed jet vehicle is realized when the formation of vortex rings maximizes the vortex ring energy and size.
The other study was a parameter study of the physical dimensions of a PVG. This study was conducted to determine the effect of the tube diameter and length on the oscillation characteristics such as the frequency. By changing the tube diameter and length by factors of 3, the frequency of self-excited oscillations was found to scale as f~D_0^{-1/2} L_0^0, where D_0 is the tube diameter and L_0 the tube length. The mechanism of operation is suggested to rely on traveling waves between the tube throat and the end of the tube. A model based on this mechanism yields oscillation frequencies that are within the range observed by the experiment.
Resumo:
Self-compression of femtosecond pulses in noble gases with an input power close to the self-focusing threshold has been investigated experimentally and theoretically. It is demonstrated that either multiphoton ionization (MPI) or space time focusing and self-steepening effects can induce pulse shortening, but they predominate at different beam intensities during the propagation. The latter effects play a key role in the final pulse self-compression. By choosing an appropriate focusing parameter, action distance of the space time focusing and self-steepening effects can be lengthened, which can promote a shock pulse structure with a duration as short as two optical cycles. It is also found that, for our calculation cases in which an input pulse power is close to the self-focusing threshold, either group velocity dispersion (GVD) or multiphoton absorption (MPA) has a negligible influence on pulse characteristics in the propagation process.
Resumo:
The focusing characteristics of long-distance flying optics were studied systemically for TEMmn Gaussian beams. The results show that the ABCD law of parameter q can be extended to Gaussian modes of any order when waist radius w in the imaginary part of parameter q is replaced by Rayleigh range Z(R) of a certain resonator in the equation. The difference between the real focal length and the geometric focal length, defined as Delta f, was calculated for laser applications. A novel self-adaptive optical system was demonstrated for precisely controlling the focusing characteristics of long-distance flying optics, Theoretical analyses and experimental results were consistent. (c) 2006 Optical Society of America.
Resumo:
We report the first measurement of two-photon absorption (TPA) and self-phase modulation in an InGaAsP/InP multi-quantum-well waveguide. The TPA coefficient, β2, was found to be 60±10 cm/GW at 1.55 μm. Despite operating at 200 nm from the band edge, self-phase modulation as high as 8±2 rad was observed for 30-ps optical pulses at 3.8-W peak input power. A theoretical calculation indicates that this enhanced phase modulation is primarily due to bandfilling in the quantum wells and the free-carrier plasma effect.
Resumo:
Engineering changes (ECs) are raised throughout the lifecycle of engineering products. A single change to one component produces knock-on effects on others necessitating additional changes. This change propagation significantly affects the development time and cost and determines the product's success. Predicting and managing such ECs is, thus, essential to companies. Some prediction tools model change propagation by algorithms, whereof a subgroup is numerical. Current numerical change propagation algorithms either do not account for the exclusion of cyclic propagation paths or are based on exhaustive searching methods. This paper presents a new matrix-calculation-based algorithm which can be applied directly to a numerical product model to analyze change propagation and support change prediction. The algorithm applies matrix multiplications on mutations of a given design structure matrix accounting for the exclusion of self-dependences and cyclic propagation paths and delivers the same results as the exhaustive search-based Trail Counting algorithm. Despite its factorial time complexity, the algorithm proves advantageous because of its straightforward matrix-based calculations which avoid exhaustive searching. Thereby, the algorithm can be implemented in established numerical programs such as Microsoft Excel which promise a wider application of the tools within and across companies along with better familiarity, usability, practicality, security, and robustness. © 1988-2012 IEEE.
Resumo:
The electronic structure of vanadium sesquioxide V2O3 in its different phases has been calculated using the screened exchange hybrid density functional. The hybrid functional accurately reproduces the experimental electronic properties of all three phases, the paramagnetic metal (PM) phase, the anti-ferromagnetic insulating phase, and the Cr-doped paramagnetic insulating (PI) phase. We find that a fully relaxed supercell model of the Cr-doped PI phase based on the corundum structure has a monoclinic-like local strain around the substitutional Cr atoms. This is found to drive the PI-PM transition, consistent with a Peierls-Mott transition. The PI phase has a calculated band gap of 0.15 eV, in good agreement with experiment.